AD-775 632

COMPUTER PROGRAMS FOR THE ANALYSIS OF SPACECRAFT MAGNETISM

Milton H. Lackey

Naval Ordnance Laboratory White Oak, Maryland

28 September 1973

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

AD 175 632

DOCUMENT CONT (Security classification of title, body of abstract and indexing			overall report is classified)
1 ORIGINATING ACTIVITY (Corporate author)			CURITY CLASSIFICATION
U. S. Naval Ordnance Laboratory			SSIFIED
White Oak, Silver Spring, Maryland		26. GROUP	
3 REPORT TITLE		I	
COMPUTER PROGRAMS FOR THE ANALYSIS OF SPA	CECRAFT MAGI	VETISM	
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)			
Magnetic Data Analysis Report S AUTHOR(S) (First name, middle initial, last name)			
Milton H. Lackey			
6. REPORT DATE	78. TOTAL NO. O	FPAGES	76. NO. OF REFS
28 September 1973	167		5
BE. CONTRACT OR GRANT NO.	Se. ORIGINATOR"	REPORT NUMB	E R(3)
b. PROJECT NO. NOL-786-GO1-53	NOLTR	73-191	
с,	Sb. OTHER REPO	RT NO(S) (Any of	her numbers that may be easigned
d.			
10. DISTRIBUTION STATEMENT			
Approved for public release; distribution	unlimited.		
11. SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY ACTIV	/ITY
		earch Labo n, D. C.	
13 ABSTRACT	<u> </u>		
This report describes five computer proportion of the spherical harmony from a satellite. The analysis is directed magnetism which correspond to the dipole monthree programs were devised to analyze data the satellite. The fourth program was deviated a specified system of multipole magnets data generation and the data analysis programs discussion to illustrate the techniques of including the INTERCOM time-sharing system. data acquisition techniques and of principal discussion to include and of principal data acquisition techniques and of principal data acquisition.	magnetism. nic analysis at determin ment, quadru from magnet sed to gener The last ams. Sample using the pr A brief de l subprogram	The progrof the maing the copole momen ic field mate simula program is problems ograms with scription	ams contain numerical gnetic field emanating mponents of the t, etc. The first easurements around ted measurement data a combination of the are included in the h a CDC 6400 Computer
).			165

DD . FORM .. 1473 (PAGE 1)

UNCLASS IFIED
Security Classification

S/N 0101-807-6801

UNCLASSIFIED
Security Classification

LINK A LINK B LINK C KEY WORDS ROLE WT ROLE ROLE Associated Legendre Polynomial Computer Programs Spacecraft Numerical Analysis Satellite Magnetism

DD FORM .. 1473 (BACK)

(PAGE 2)

UNCLASS IFIED
Security Classification

28 September 1973

Computer Programs for the Analysis of Spacecraft Magnetism

During the past several years techniques have been developed for measuring and analyzing the magnetism of spacecraft. The techniques are directed, first, at estimating the spacecraft's magnetic dipole moment and, second, at compensating the dipole moment to allow the spacecraft to maintain a stable orientation while in orbit. This procedure requires accurate measurements of the magnetic field emanating from the spacecraft. The Naval Ordnance Laboratory is currently involved in the development of a facility to conduct sophisticated magnetic tests of spacecraft. The facility will contain instrumentation which will automatically record and analyze the test data. This report has been published to document the numerical techniques to be used in the analysis of the data. Techniques are also described which can be used to predict the accuracy of different types of measurement and analysis techniques.

The development and testing of the computer programs required a considerable amount of effort. Mr. H. W. Korab contributed much to this effort, including the development of the BASIC version of the analysis procedure. He also assisted in the development of the illustrations included in this report.

This work was funded in part by the Spacecraft Technology Center of the Naval Research Laboratory under task number NOL-786-GO1-53.

ROBERT WILLIAMSON II

Captain, USN Commander

R. B. KNOWLES

CONTENTS

Cha	pter INTRODUCTION	Page
2.	DATA ACQUISITION TECHNIQUES	3
3.	MAIN PROGRAMS	7
	Programs SA1024 and SA2024	7
	Introduction	7
	Input Data	7
	Output Data	8
	Sample Problem for SA2024	9
	Program SA3024	10
	Introduction	10
	Input Data	10
	Output Data	12
	Integrating Schemes	14
	Units	19
	Sample Problems	19
	Program SA4024	20
	Introduction	2 C
	Input Data	20
	Output Data	22
	Sample Problems	23
	Program SA5024	24
	Introduction	24
	Input Data	24
	Output Data	26
	Sample Problems	26

CONTENTS (CONT)

Chapter 4. PRINCIPAL SUBPROGRAMS	Page 31
Introduction	31
Subroutine AMPMNT	31
Subroutine AMPFLD	32
Functions PNM, SPNM, and ANF	35
Subroutine DATPLT	36
Subroutine FNCTON	37
5. CONCLUSIONS	39
APPENDIX A GLOSSARY OF SYMBOLS AND TERMS	A-1
APPENDIX B LISTING OF SALO24	B-1
AFPENDIX C LISTING OF SA2024	C-1
APPENDIX D SAMPLE PROBLEM FOR SA2024	D-1
APPENDIX E LISTING OF SA3024	E-1
APPENDIX F SAMPLE PROBLEMS FOR SA3024	F-1
APPENDIX G LISTING OF SA40.24	G-1
APPENDIX H SAMPLE PROLLEMS FOR SA4024	H-l
APPENDIX I LISTING OF SA5024	I - 1
APPENDIX J SAMPLE PROBLEMS FOR SA5024	J -1
APPENDIX K NOL TECHNICAL NOTE 9726	K-1
ILLUSTRATIONS	
Figure Title	Page
1 Illustration of Spherical Polar Coordinates	40
2 Degrees of Freedom for Measurements	41
3 Sphere of Measurements	42
4 Satellite Initial positions for NO = 6	43
5 Illustration of Sample Problem	44
6 Typical Data Curves	45
7 Example of Surface Area Elements Assigned to Data Point	46
8 Examples of Intervals of Colatitude	47
9 Data Curves from SA3024 for Sample Problem	48
Data Curves from SA4024 for Sample Problem	49

ILLUSTRATIONS (CONT)

Figure	Title	Page
11	Dipole Curves for $A_1^0 = D_3 = 1000 \text{ gauss-cm}^3$	50
12	Dipole Curves for $A_1^{\overline{1}} = D_1 = 1000 \text{ gauss-cm}^3$	51
13	Dipole Curves for $B_1^I = D_2 = 1000 \text{ gauss-cm}^3$	52
14	Quadrupole Curves for A2 = 1000 gauss-cm4	53
15	Quadrupole Curves for $A_2^1 = 1000$ gauss-cm ⁴	54
16	Quadrupole Curves for A2 = 1000 gauss-cm4	55
17	Quadrupole Curves for $B_2^1 = 1000$ gauss-cm ⁴	56
18	Quadrupole Curves for $B_2^2 = 1000$ gauss-cm ⁴	57
19	Quadrupole Curves for $Q_{11} = 1000$ gauss-cm ⁴ and $Q_{22} = Q_{33} = -500$	
	gauss-cm4	58
20	Quadrupole Curves for $Q_{22} = 1000$ gauss-cm ⁴ and $Q_{11} = Q_{33} = -500$	
	gauss-cm4	59
21	Quadrupole Curves for $Q_{33} = 1000$ gauss-cm ⁴ and $Q_{11} = Q_{22} = -500$	
	gauss-cm4	60
22	Quadrupole Curves for Q ₁₂ = 1000 gauss-cm ⁴	61
23	Quadrupole Curves for Q ₁₃ = 1000 gauss-cm ⁴	62
24	Quadrupole Curves for Q ₂₃ = 1000 gauss-cm ⁴	63
25	Data Curves from SA5024 for Sample Problem	64
26	Multipole Component of Degree 1 (Dipole Component)	65
27	Multipole Component of Degree 2 (Quadrupole Component)	66
28	Multipole Component of Degree 3	67
29	Multipole Component of Degree 4	68
30	Multipole Component of Degree 5	69
31	Multipole Component of Degree 6	70
32	Multipole Component of Degree 7	71
33	Multipole Component of Degree 8	72
34	Summation of First Eight Multipole Components	73
35	Individual Curves Demonstrating Approximation Accuracy	74
36	Data Curves for Radially Offset Dipole	75
37	Data Curves for Transversely Offset Dipole	76
38	Sample Graph From Electrostatic Plotter	77

TABLES

Table	Title	Page
1	Examples of Minimum Values of NO and N1	15
2	Peak Data for the Multipole Components of the Sample Problem	27
3	Maximum Error Versus Parametric Variation in Computing the	
	Dipole Moment for the Sample Problem	29

REFERENCES

- (a) NOLTR 69-60, The Reaction of a Rigid Body to a Uniform Force Field, 17 Mar 1969, by M. H. Lackey
- (b) S. Chapman & J. Bartells, Geomagnetism (Oxford Press, London, 1940), Vol. II
- (c) NASA TM X-63765, A New Method for Determining the Magnetic Dipole Moment of a Spacecraft from Near-field Data, August 1969, by W. L. Eichhorn
- (d) NOLTR 73-128, Proposed Modernization of the Spherical Field Coil Facility, Building 203, 11 June 1973, by M. H. Lackey
- (e) NOL ltr 533:MHL:gs 3900 Ser: 5154 of 5 Sep 1973 to NRL, Subj: Magnetic Test Facility for Satellites, instrumentation for

Chapter 1

INTRODUCTION

- 1. A major effort has been applied to the development of computer programs and subprograms to assist in the analysis of satellite magnetism. The analysis is part of a procedure directed at determining and compensating the magnetic dipole moment of a satellite. The procedure involves four steps. The first step is to measure the normal component of the satellite's magnetic field on the surface of a sphere enclosing the satellite. The second step involves the spherical harmonic analysis of the measured data to determine the magnitude and the direction of the satellite's dipole moment. The third step is to attach an opposing dipole to the satellite with equal magnitude and opposite direction. The final step is to repeat the measurement and analysis procedures to verify the compensation.
- 2. The five programs described in this report have been devised to perform a variety of data analysis tasks. One of the programs is coded in the BASIC computer language. The other four are coded in FORTRAN IV. The first three programs are used to analyze data representing the normal component of the magnetic field on the surface of a sphere enclosing the satellite. The fourth program is used to generate simulated measurement data for a specified system of multipole magnets. The program also allows the simulation of measurement errors. The last program is a combination of the data generation and the analysis programs. The programs have been designed to allow a variety of options including:
 - a. Reading the input data from paper tape or from a data file
- b. Using either an algebraic or geometric integrating scheme to perform the analysis
 - c. Printing the data after preliminary data processing
 - d. Interpolating and plotting the processed data curves.

3. The discussion begins with a brief description of data acquisition techniques. This is followed by a description of the five programs including sample problems which demonstrate the use of the programs. Finally, a description is given of some of the primary subprograms. These are listed separately since they can be used as building blocks for other programs. The discussion is supplemented by several illustrations, many of which are the actual computer outputs from the execution of the computer programs. The majority of the data curves are output from the CALCOMP 570 digital incremental plotter. A description of the data units for the programs has also been included in paragraph 33. Appendix A contains a glossary of symbols and terms used in the report.

Chapter 2

DATA ACQUISITION TECHNIQUES

- 4. A brief description of spherical coordinates and the techniques used in the data acquisition will assist in the description of the parameters used in the data analysis and the computer programs. Figure 1 illustrates the relationship between rectilinear and spherical coordinates. An arbitrary point \overline{R} (or vector) in space can be defined in terms of the spherical coordinates of R, θ , and ϕ representing the radial distance, the colatitude and the (easterly) longitude respectively. (θ is sometimes called the polar angle, and ϕ is sometimes called the dihedral angle.) Appendix A gives the definitions of these coordinates in terms of rectilinear coordinates.
- 5. Figure 2 shows a simplified diagram of the test setup for conducting the measurements of a satellite's magnetism. The degrees of freedom illustrated in the figure are defined to correspond to the spherical angles. The rotation axis, provided by a horizontal turntable, allows a variation in colatitude. The tilt axis, provided by a gimballing fixture attached to the satellite, allows a variation in longitude. Analog curves are made of the sensor reading versus the colatitude for a fixed set of positions of longitude. The curves are recorded while the satellite is in a zero magnetic field environment. Notice that the sensor in Figure 2 is radially aligned. This setup generates analog curves representing the normal component of the satellite magnetism along great circles of longitude as shown in Figure 3.
- 6. Let the <u>parameter NO</u> represent the number of curves of data to be recorded. These curves correspond to measurements along great circles spaced (180/NO) degrees apart. Figure 3 shows an example when NO = 6. There will be six analog curves of data corresponding to the six great circles. Figure 4 shows the initial positions for each of the curves.

- 7. As a sample problem consider the system of dipoles illustrated in Figure 5. The first curve begins with the $\pm z$ -axis directed at the magnetic sensor and the $\pm z$ -axis pointed up. The turntable is rotated elockwise. Prior to beginning each succeeding curve, the satellite is tilted (180/N0 = 30) degrees around the z-axis. Figure 6 shows a typical set of six data curves for the sample problem. Each curve is marked with 25 data points. The parameter N1 is used to represent the number of data points per curve (N1 = 25 in the example). The points are spaced (360/(N1-1)) = 15 degrees apart. The value at each measurement point is automatically recorded via analog-to-digital (A/D) conversion equipment in the satellite measurements.
- 8. Notice that the curves in Figure 6 do not all begin with the same value, although, theoretically they should. This is typical of the type of measurements that are made on satellites. The curves represent relative measurements instead of absolute measurements. It would be possible to insure that the curves all begin with the same value, but it would not necessarily be the correct value.

 Nevertheless, the data analysis is independent of the starting value of each curve. Therefore, no concern is given to this problem in the acquisition of the data.
- 9. Reference (a) lists several considerations in the determination of the parameters for the data acquisition including NO, N1, and the radius R1 of the measurement sphere. The considerations include:
 - a. The smoothness of the data curves
 - b. The analysis method
 - c. The accuracy of the measuring apparatus
 - d. The round-off errors of the computing machine.

The parameters are not all independent. They must be determined by making certain compromises. For instance, the data curves can be smoothed by increasing Rl (i.e., by increasing the minimum distance between the surface of the measurement sphere and the satellite), but this will decrease the relative accuracy of the data. Also, the total number of data points NO·Nl may be increased, but computing machine errors will become more significant. An increase in the number of data points will also increase the computing time and data storage.

- 10. Experience has shown that the dipole moment for most problems can be approximated accurately enough if the following conditions hold:
- a. Let the minimum distance between the surface of the measurement sphere and the satellite be at least half the maximum diameter of the satellite to insure sufficient smoothness of the data curves. For example, the radius of the measurement sphere for a body with maximum diameter of 50 inches, and centered at the origin, should be at least 50 inches.
- b. Let NO be \geq 8 and N1 be \geq 16 to insure that the errors from the numerical approximation are smaller than the measurement errors. (This condition can be relaxed in cases where the satellite magnetism gives simple sine-cosine curves. In the past, NO = 4 and N1 = 25 has been sufficient in many cases.)
- c. Use the simplest analysis procedure (i.e., the geometric integrating scheme) for the preliminary analysis since it is relatively accurate and easy to use.

Chapter 3

MAIN PROGRAMS

PROGRAMS SA1024 AND SA2024

Introduction

11. The programs labeled SA1024 and SA2024 (Appendices B and C) are BASIC and FORTRAN IV versions, respectively, of the basic one-term data analysis procedure. The procedure is simple because only the dipole moment term is computed for the satellite magnetism and only the approximate method of numerical integration is used. The programs print the measurement data and the computed dipole moment in rectilinear and spherical coordinates. They also print data which assists in calibrating and aligning the compensating dipoles. The major difference between the two versions is the manner of entering the data. The BASIC version is set up to take the data from DATA statements. The FORTRAN IV version accepts data from paper tape or from a data file.

Input Data

- 12. The data is entered into the programs in the order of the following definitions:
 - a. First line of data or data card format: (315)
 - NO The number of curves of data (NO is even and ≤ 16 .)
 - N1 The number of equally spaced data points per curve from 0 thru
 360 degrees colatitude (N. is odd and ≤ 33. The first and last
 data points for each curve correspond to measurements at
 0 degrees colatitude.)
 - IR The parameter that determines whether or not to read the data from a data file. IR \neq 0 means that the data will be read from the data file DATO24. (This parameter is used only with the FORTRAN IV version.)

- b. Second line of date or data card format: (2F6.1)
 - R1 The radius of the measurement sphere in inches
 - C6 The value of the calibration signal (C7-C8) in gamma
- c. Third line of data or data card format: (15)
 - N2 The parameter that determines whether or not to print the measured data ($N2 \neq 0$ means that the data will be printed.)
- d. Measurement data format: (9F6.1) (These cards are deleted if IR \neq 0.)
 - C7 The static measurement with the calibration signal
 - C8 The static measurement without the calibration signal

F(I,J) - The measurement data for $I = 1, 2, \dots, NI$ and $J = 1, 2, \dots, NO$.

The input data cycle may be repeated by starting with new data NO, N1, and IR again. The program execution is terminated by setting the new value for NO equal to zero.

Output Data

13. The programs SA1024 and SA2024 then perform a numerical integration of the equation

$$\overline{D} = (3 \cdot Rl^3 / 8\pi) \int_0^{\pi} \int_0^{2\pi} f(\theta, \phi) \sin \theta \, d\theta \, d\phi$$
 (1)

for the dipole moment \overline{D} . The numerical equation is

$$\overline{D} \approx (3 \cdot R1^3 / 8\pi) \sum_{J=1}^{NO} \sum_{I=1}^{NI} F(I,J) \cdot \overline{\pi}(\theta(I), \varphi(J)) \cdot X(I)$$
 (2)

where

$$\overline{D} = (D_1, D_2, D_3)$$
 is in gauss-centimeters³

$$F(I,J) = f(\theta(I), \phi(J)) \text{ is in gammas}$$

$$\overline{n}(\theta(I), \phi(J)) = \begin{bmatrix} \sin (\theta(I)) \cdot \cos(\phi(J)) \\ \sin (\theta(I)) \cdot \sin(\phi(J)) \\ \cos (\theta(I)) \end{bmatrix}$$

$$\theta(I) = 2\pi(I-1)/(NI-1)$$
 is the colatitude (turntable angle) (3a)

$$\varphi(J) \equiv \pi(J-1)/NO \text{ is the longitude (tilt angle)}$$
 (3b)

$$X(I) = [\sin(\pi/(2 \cdot N1 - 2))]^2/(2 \cdot N0) \text{ if } I = 1 \text{ or } N1$$
 (4a)

$$= \left[\sin(\pi/(2 \cdot N1 - 2)) \right]^2 / NO \text{ if } I = (N1 + 1)/2$$
 (4b)

$$\equiv |\sin(\theta(I)) \cdot \sin(\pi/(NI - 1))|/(2 \cdot NO) \text{ if } I \neq 1, (NI + 1)/2, \text{ or NI. } (4c)$$

14. Next, the dipole moment is transformed into spherical coordinates as

$$D = (D_1^2 + D_2^2 + D_3^2)^{\frac{1}{2}}$$

$$\theta = \tan^{-1} \left[(D_1^2 + D_2^2)^{\frac{1}{2}} / D_3 \right] \cdot 180 / \pi = \text{colatitude}$$

$$\phi = \tan^{-1} (D_2 / D_1) \cdot 180 / \pi = \text{longitude}$$

15. Finally, the program computes the values of two compensating magnets: one in the xy-plane and one along the z-axis. The value of the dipole field at one meter is also given to assist in charging the magnets to the desired values.

Sample Problem for SA2024

16. Appendix D contains the input and output data for SA2024 using the sample problem represented in Figures 5 and 6. The file BN2024, which is used for execution, is the binary version of SA2024. This example was executed in two different ways on the INTERCOM time-sharing system using the CDC 6400 computer. The information typed in at the teletype terminal has been underlined. Data tapes representing the measurement data are generated by the A/D equipment during the measurements. The program automatically reads the data in the proper format; converts the data into gammas using the calibration parameters C6, C7, and C8; and adjusts the data so that the beginning and ending points for all the curves have nearly the same value. The result of this procedure is visible in the data print-out on page 2 of Appendix D.

MCLTR 73-191

17. The first method of data input in Appendix P was from the file DATO24. This complete problem required only the first three lines of data. The measurement data was read into the file from an earlier execution of SA2O24. (The program execution automatically generates the file DATO24 if the data is read in from tape.) The remaining lines of data initiated the computation of the solution to the same problem except that the measurement data was read in from a data tape.

PROGRAM SA3024

Introduction

- 18. The program SA3024, listed in Appendix E, allows a more complete analysis to be performed on the data. The program can be used to compute the dipole, quadrupole, and higher order multipole terms. Also included is an optional method of integrating the data and a data plotting option. The optional integrating scheme is labeled "exact" although it is exact only for magnetic data from a finite number of multipole magnets centered at the origin. This scheme is discussed in more detail in paragraphs 25 through 32 and in reference (a).
 - 19. The program uses several special subprograms to perform such tasks as:
- a. The computation of spherical harmonic coefficients for magnetic field data
- b. The generation of values of associated Legendre polymomials and Schmidt functions
 - c. The inversion of an n x n matrix
 - d. The interpolation and plotting of data.

Some of these subprograms will be discussed in more detail in later sections.

Input Data

- 20. The method for entering the data into SA3024 is very similiar to the method for SA2024 with several additional variables. The data is entered in the following order:
 - a. First line of data or data card format: (615)
 - NO The number of curves of data (NO is even and < 16.)

- N1 The number of equally spaced data points per curve from

 0 thru 360 degrees colatitude (N1 is odd and ≤ 33. The first and
 last data points for each curve correspond to measurements at

 0 degrees colatitude.)
- NH The highest degree spherical harmonic term to be computed from the data (NH = 1 for dipoles, 2 for quadrupoles, etc.)
- IR The parameter that determines whether or not to read the data from a data file (IR \neq C ... sans that the data will be read from the file DATO24.)
- IP1 The parameter that determines whether or not the data is to be interpolated and plotted (IP1 \neq 0 means that the data will be interpolated and plotted.)
- IW The parameter that determines which integrating scheme is to be used (IW = 0 means that the exact, algebraic scheme is to be used.)

b. Second line of data or data card - format: (3F8.4)

- Rl The radius of the measurement sphere in inches
- CV The value of the calibration signal (CS-CZ) in gamma
- PY The scale factor (gammas/inch) for the y-axis if the data is to be plotted (If PY = 0.0 a factor will be computed from the data.)

c. Third line of data or data card - format: (I5)

- IP2 A parameter that determines whether or not to print the measured data (IP2 \neq 0 means that the data will be printed.)
- d. Measurement data format: (9F6.1) (These cards are deleted if IR \neq 0.)
 - CS The static measurement with the calibration signal
 - CZ The static measurement without the calibration signal

F(I,J) - The measurement data for $I=1,2,\cdots,Nl$ and $J=1,2,\cdots,N0$.

The input data cycle may be repeated by starting with new data NO, N1, ..., etc. The program is terminated by setting the new value for NO equal to zero.

Output Data

21. The program then computes the spherical harmonic coefficients A_n^m and B_n^m based on the equation

$$\begin{cases}
A_{n}^{m} \\
B_{n}^{m}
\end{cases} = \left[(2n+1) \cdot R 1^{n+2} / (4\pi \cdot (n+1)) \right] \int_{0}^{\pi} \int_{0}^{2\pi} \mathbf{f}(\theta, \varphi) \cdot P_{n}^{m} (\cos \theta) \begin{cases} \cos(m\varphi) \\ \sin(m\varphi) \end{cases} \cdot \sin \theta d\theta d\varphi$$
(5)

for $n = 0, 1, \dots, NH$ and $m = 0, 1, \dots, n$. The numerical equivalent of equation (5) is

$$\begin{cases}
A_{n}^{m} \\
B_{n}^{m}
\end{cases} = \left[(2n+1) \cdot R \mathbf{1}^{n+2} / (4\pi \cdot (n+1)) \right] \sum_{J=1}^{NO} \sum_{I=1}^{NI} F(I,J) \cdot P_{n}^{m}(\cos(\theta(I))) \cdot \left\{ \frac{\cos(m \cdot \varphi(J))}{\sin(m \cdot \varphi(J))} \right\} \cdot Y(I)$$
(6)

where

n is the degree of the spherical harmonic term

m is the order of the spherical harmonic term

- $P_n^m(\cos(\theta(I)))$ is the Schmidt function of degree n and order m. (These functions are discussed in Appendix K.)
- Y(I) is the array of weighting factors for the numerical integration. (One of two methods can be used to determine the values for Y(I) depending on the parameter IW.)
- $\theta(I) = 2\pi(I-1)/(NI-1)$ is the colatitude (turntable angle)
- $\varphi(J) \equiv \pi(J-1)/N0$ is the longitude (tilt angle).

Equation (5) gives an expansion for the function $f(\theta, \phi)$ as

$$\mathbf{f}(\theta, \varphi) = \sum_{n=0}^{\infty} (n+1)/(\operatorname{Rl}^{n+2}) \sum_{m=0}^{n} \left[A_{n}^{m} \cos(m\varphi) + B_{n}^{m} \sin(m\varphi) \right] P_{n}^{m}(\cos(\theta)). \tag{7}$$

If the expansion is written as $f(\theta, \varphi) = \sum_{n=0}^{\infty} f_n(\theta, \varphi)$ then each $f_n(\theta, \varphi)$ represents the field from a multipole magnet of degree n. (Reference (a) contains more details on the expansion of the function $f(\varphi, \theta)$.)

22. In general, the coefficients A_n^m and B_n^m can be stored as two-dimensional arrays A(n,m) and B(n,m), or, they may be packed into single-dimensional arrays as

$$A(m + 1 + (n^2 + n)/2) = A_n^m$$
 for $n = 0,1,2,\cdots$ and $m = 0,1,\cdots,n$
 $B(m + (n^2 - n)/2) = B_n^m$ for $n = 1,2,\cdots$ and $m = 1,2,\cdots,n$.

23. The program SA3024 is set up to conserve storage by computing and storing the coefficients for only one degree term at a time (i.e., for each fixed n) using the equations

$$A(m + 1) = A_n^m \text{ for } m = 0, 1, \dots, n$$

$$B(m) = B_n^m \text{ for } m = 1, 2, \dots n.$$
(8)

It should be noted that the coefficient A_0^0 , corresponding to the monopole moment, would be zero if the numerical integration was exact and the data F(I,J) was correct. If the monopole moment is not zero, then the data is corrected prior to being printed and prior to further analysis. Also for n=1 and Y(I)=X(I) it can be shown that Eqs. (1) (or (2)) and (5) (or (6)) are identical if

$$D_{1} = A_{1}^{1}$$

$$D_{2} = B_{1}^{1}$$

$$D_{3} = A_{1}^{0}.$$
(9)

24. The dipole moment $\overline{D} = (D_1, D_2, D_3)$ is computed and printed out separately in the program in both rectilinear and spherical coordinates. The program is also

set up to compute the quadrupole moment Q_{ij} for i and j=1, 2, and 3. This is computed and printed separately if $NH \ge 2$. The computation is based on the equations

$$Q_{11} = \sqrt{3} \cdot A_2^2 - A_2^0 \tag{10a}$$

$$Q_{22} = -\sqrt{3} \cdot A_2^2 - A_2^0 \tag{10b}$$

$$Q_{33} = 2A_2^0$$
 (i.e., $Q_{11} + Q_{22} + Q_{33} = 0$) (10c)

$$Q_{12} = \sqrt{3} \cdot B_2^2 \tag{10d}$$

$$Q_{13} = \sqrt{3} \cdot A_2^1 \tag{10e}$$

$$Q_{23} = \sqrt{3} \cdot B_2^1 \tag{10f}$$

$$Q_{ij} = Q_{ji}$$
 for i and j = 1, 2, and 3. (10g)

The higher degree coefficients for $n = 3,4,\cdots,NH$ are printed only in their spherical form.

Integrating Schemes

25. The program SA3024 is set up to allow a choice between two numerical integration schemes for Eq. (6). These two schemes are based on two different methods for determining the weighting factors $\{Y(I)\}$. The factors actually correspond to the elements of spherical surface area assigned to each data point F(I,J). Therefore, a geometrical description of the two different sets of weighting factors will provide some insight into the two methods of numerical integration. Figure 7 shows an example of the areas assigned to a data point for both integrating methods. The dashed lines are boundaries for areas when the parameter $IW \neq 0$. The areas have values $\{X(I)\}$ as defined in Eq. (4). (The weighting factors $\{Y(I)\}$ in Eq. (6) are then set equal to $\{X(I)\}$.) The dashed lines are equally spaced between data points with equal intervals of longitude $(= \pi/N0)$ and equal intervals of colatitude $(= 2\pi/N1)$. The weighting factors $\{Y(I) = X(I)\}$ are easier and faster to calculate by computer than the factors when IW = 0. The resulting integration has good numerical stability and gives fairly accurate answers.

26. If the parameter IW = 0, then a more exact integrating scheme is used. The weights $\{Y(I)\}$ are still elements of area on the surface of the unit sphere, and they still consist of equal intervals of longitude. But the intervals of colatitude (dotted lines in Figure 7) are varied to make certain surface integrals exact if the integrand consists of a finite number of spherical harmonic terms. The highest degree term that can be contained in the integrand (or highest degree magnet that can be represent by the data F(I,J)) and still be exact depends on the parameters NO and N1. The relationship of NO and N1 to the degree n and order m of the coefficients A_n^m and B_n^m are

$$NO \ge m + 1$$

$$N1 \ge \Delta n + 1.$$
(11)

Since $m \le n$, as seen in Eqs. (5) and (7), the coefficients for a multipole magnet of degree n can be approximated accurately only if

$$N0 \ge n + 1$$

$$N1 \ge 4n + 1.$$
(12)

This means that the dipole terms (n = 1) require that $NO \ge 2$ and $NI \ge 5$. The following table shows values for several multipole magnets.

n	NO≥	Ml≥
l (dipole)	2	5
2 (quadrupole)	3	9
3	4	13
4	5	17
5	6	21
6	7	25
7	8	29
8	9	33

TABLE 1 EXAMPLES OF MINIMUM VALUES OF NO AND NI

27. It should be noted here that setting NO, N1 = 2, 5 will not generally give the dipole term very accurately unless the higher degree terms are all zero. For example, consider a problem which has only dipole and quadrupole terms, and assume

that only the dipole coefficients are to be computed. Then NO, N1 > 3, 9 is required to insure the accuracy of the dipole computations. In general a problem contains an infinite number of terms. The only cases when the expansion in Eq. (7) contains a finite number of terms are when there are only a pure dipole (of insignificant length), a quadrupole, and/or, a finite number of other multipole magnets which are centered at the origin. An offset dipole or a dipole of considerable length (or any offset multipole magnet of degree n) requires an infinite number of terms for representation by Eq. (7). In general, it is best to select NO and N1 as large as possible with

$$NO = (N1 - 1)/2. (13)$$

28. For IW = 0, the weights Y(I) are composed of two factors D(I) and C, i.e.,

$$Y(I) = D(I) \cdot C \tag{14}$$

for $I = 1, 2, \dots, N1$ and $J = 1, 2, \dots, N0$ (see reference (a)). The constant C represents the equally spaced intervals of longitude with value

$$C = \pi/NO. \tag{15}$$

The factors D(I) are determined by solving a set of simultaneous linear equations. The equations can be set up in a number of ways since the factors are symmetric with respect to the values of colatitude of $\theta = \pi/2$ and $\theta = \pi$. The method used in SA3024 is to set up and solve the equations for factors representing the intervals between $\theta = 0$ and $\pi/2$, and then to use symmetry to determine the other weights. This procedure involves two different cases based on the odd integer N1. Figure 8 shows the intervals of colatitude for two examples; one when (Nl + 1) is a multiple of 4 and one when it is not. The examples give rise to two different sets of equations for the factors D(I) as follows:

a. Equations when (N1 + 1) is a multiple of 4 Let

$$\theta(I) = 2\pi(I-1)/(NI-1)$$
 (3a)

$$N3 = largest integer \le (N1 + 3)/4$$
 (16)

Then

$$\sum_{J=1}^{N3} D(J) = 1$$
 (17a)

$$\sum_{J=1}^{N3} (\cos \theta(J))^{(2I-2)} \cdot D(J) = 1/(2I-1)$$
 (17b)

for $I = 2, 3, \dots, N3$

$$D[(N1 + 3)/2 - J] = D(J)$$
 (17c)

for $J = 2, 3, \dots, N3$

$$D(N1 + 1 - J) = D(J)$$
 (17d)

for $J = 1, 2, \dots, (N1 - 1)/2$

$$D[(N1 + 1)/2] = 2D(1)$$
 (17e)

b. Equations when (Nl + 1) is not a multiple of 4 Let $\theta(I)$ and N3 be defined as in Eqs. (3a) and (16). Then

$$\sum_{j=1}^{N3} 2D(J) + D(N3 + 1) = 2$$
 (18a)

$$\sum_{J=1}^{N3} (\cos \theta(J))^{(2I-2)} \cdot D(J) = 1/(2I-1)$$
 (18b)

for $I = 2,3,\dots,N3 + 1$. Equations (17c), (17d), and (17e) remain unchanged.

29. In Eqs. (17a) and (17b) the I and J "subscripts" can be considered to designate the row and column for the coefficient matrix for N3 simultaneous linear equations in N3 unknowns. This also follows in Eqs. (18a) and (18b) except for an $(N3 + 1) \times (N3 + 1)$ system of linear equations. The system of equations for two examples are given below.

30. Let N1 = 7. Then (N1 + 1) = 8 is a multiple of 4, and

$$N3 = 2 \le (7 + 3)/4 = 2.5$$

$$\theta(1), \theta(2) = 0, 60^{\circ}$$
 $\cos(60) = 1/2.$

Therefore Eqs. (17a) and (17b) imply that

$$D(1) + D(2) = 1$$

 $D(1) + D(2)/4 = 1/3$

These equations are satisfied by

$$D(1) = 1/9, D(2) = 8/9.$$

The remaining equations, (16c), (16d), and (16e), imply that

$$D(1)$$
, $D(2)$, ..., $D(7) = 1/9$, $8/9$, $8/9$, $2/9$, $8/9$, $8/9$, $1/9$.

31. Next, let N1 = 9. Than (N1 + 1) = 10 is not a multiple of 4, and $N3 = 3 \le (9 + 3)/4 = 3.0$ $\theta(1), \theta(2), \theta(3) = 0, 45^{\circ}, 90^{\circ}$ $\cos(45^{\circ}) = 1/\sqrt{2}.$

Therefore, Eqs. (18a) and (18b) imply that

$$2D(1) + 2D(2) + D(3) = 2$$

 $D(1) + D(2)/2 = 1/3$
 $D(1) + D(2)/4 = 1/5$

The solution to these equations is

$$D(1)$$
, $D(2)$, $D(3) = 1/15$, $8/15$, $4/5$.

The remaining equations, (17c), (17d), and (17e), imply that

$$D(1)$$
, $D(2)$, ..., $D(9) = 1/15$, $8/15$, $4/5$, $8/15$, $2/15$, $8/15$, $4/5$, $8/15$, $1/15$.

32. Reference (a) gives a more theoretical approach to the methods of integration and describes another method for determining the factors D(I) using a polynomial approach. This method was compared with the direct inversion of the Eqs. (16) and (17). The results indicated that the direct inversion method was more stable numerically and took less computer time.

Units

33. All the programs use a mixed system of units. In general, the magnetic units are in the cgs system, e.g., the magnetic field intensity \overline{H} ($f(\theta,\phi)$ in Eq. (5)) is in gammas (10^{-5} coersted with a permeability of one). The units for a multipole moment of degree n is pole-centimeterⁿ, e.g., monopole moment is in poles, dipole moment is in pole-centimeters (cm), quadrupole moment is in pole-cm². The unit pole is equivalent to gauss-cm². The unit of length is inches. This is used for the measurement radius Rl and the multipole position vectors P (for programs SA4024 and SA5024). The unit of gammas is used for the data array F(I,J) and for the error parameters EG and ED (for programs SA4024 and SA5024). Any parameters that represent angles or angular errors are in degrees.

Sample Problems

- 34. Appendix F contains the input and output data for SA3024 using the same measurement data as in SA2024 (Figures 5 and 6). The file BN3024, used in the execution, is the binary version of SA3024. Only the first 16 binary records (subprograms) are used when executing via INTERCOM. As before, the example was executed in two different ways on the INTERCOM System. The problem was also submitted to BATCH processing via INTERCOM to demonstrate a method of using the plotting option of the program. One of the two identical plots that resulted from the BATCH processing is included in Figure 9. Although the example in Section II of Appendix F was set up to use the GOULD electrostatic plotter, the data was later plotted on the CALCOMP to simplify reproduction problems.
- Appendices D and F and Figures 6 and 9. The first characteristic is the data processing. This involves the conversion of the data units and the adjustment of the curves so that all the curves begin and end as near as possible to the beginning and ending of the first curve. The curve adjustment can be observed by comparing the print out of the data tape on page D-1 and the data printed on page D-2. The first points of curves 1 and 2 on the data tape are -504.3 and -902.8. After the data processing these points are -504.3 and -502.8. Another data adjustment in SA3024 has to do with the monopole moment. Since the monopole moment should be zero if the data has absolute accuracy, then the data is adjusted to produce this condition. The procedure involves the computation of the monopole moment, and then, the subtraction of the magnetic field of the monopole component from the data. A comparison of the data printed on page D-2 and on pages F-2 and

- F-3 show a difference of about 24 gammas. This appears as the monopole moment of 14.3. printed on page F-2. The data plotted in Figure 9 represents the data that would have been measured if absolute accuracy was attainable.
- 36. An example of the method of printing out the spherical harmonic coefficients is shown on page F-3. For each $n\underline{th}$ degree harmonic term, the coefficients A_n^m for $m=0,1,\cdots,n$ are printed on the first line, and the coefficients B_n^m for $m=1,2,\cdots,n$ are printed on the second line. It should be noted that in the definitions related to Eqs. (5) and (6), the coefficients A_n^m and B_n^m are coefficients for the Schmidt polynomials and not for the associated Legendre polynomials. The relationship is discussed in more detail in Appendix K.

PROGRAM SA4024

Introduction

- 37. The program SA4024, listed in Appendix C, was devised to assist in the conduct of error studies relating to the analysis of satellite magnetism. The program is set up to generate data simulating measurements around a specified system of multipole magnets representing the satellite. Simulated errors can be inserted into the generated data to represent position and instrumentation errors. The generated data is written on a data file (DAT024) in the same format as the one used in the data acquisition procedures with the punched paper tape. The data file is generated in a form that can be used with programs SA2024 and SA3024. The program SA4024 also contains the plotting option.
 - 38. Special subprograms used in the program perform such tasks as:
- a. The computation of the magnetic field vector at a remote location from a multipole magnet
- b. The generation of values of associated Legendre polynomials and Schmidt functions
 - c. The interpolation and plotting of the magnetic data.

Input Data

39. The input data for SA4024 varies considerably from the preceding programs since it includes specifications for multipole magnets and data errors. The data is entered in the following order:

a. First line of data or data card - format: (415)

- NO The number of curves of data (NO is even and \(\) 16.)
- N1 The number of equally spaced data points per curve from 0 thru 360 degrees colatitude (N1 is odd and ≤ 33. The first and last data points for each curve correspond to measurements at 0 degrees colatitude.)
- NH The total number of different harmonics (degrees) of multipole magnets to be considered
- IP The parameter that determines whether or not the data is to be interpolated and plotted (IP \neq 0 means that the data will be interpolated and plotted.)

b. Second line of data or data card - format: (5F8.4)

- R1 The radius of the measurement sphere in inches
- EG The error (in gamma) to be randomly inserted into the data to represent instrumentation inaccuracies
- EA The angular error (in degrees) to be randomly inserted into the data to represent measurement position errors
- ED The constant error (in gammas) to be inserted into the data to represent offset in the instrumentation. (This will be analyzed as monopole moment.)
- PY The scale factor (gammas/inch) for the y-axis if the data is to be plotted. (If PY = 0.0 a factor will be computed from the data.)

c. Third line of data or data card - format: (7AlO)

F9 - The format for reading and printing the spherical coefficients A(I) and B(I), e.g., (1H, 7E10.4)

All of the following data is repeated "NH" times:

d. Next line of data or data card - format: (215)

- NN The harmonic number (degree) of the multipole data being read in (NN = 1 for dipoles, 2 for quadrupole, etc.)
- NM The number of multipoles with harmonic number NN

The following data is repeated "NM" times:

- e. Next lines of data or data cards format: (3F8.4)
 - P The position vector (in inches) of the multipole in rectilinear coordinates (P_x, P_v, P_z.)
- f. Next lines of data or data cards format: F9
 - A(I) The spherical coefficients A_{NN}^{I-1} for the multipole of degree NN where $I=1,2,\cdots,NN+1$ (The order of the Ith coefficient is I-1.)
- g. Next lines of data or data cards format: F9
 - B(I) The spherical coefficients B_{NN}^{I} for the multipole of degree NN where $I=1,2,\cdots,NN$ (The order of the Ith coefficient is I.).

(The relationships between spherical and rectilinear coefficients for dipoles and quadrupoles are given in Eqs. (9) and (10).)

Output Data

40. The program computes data representing measurements of the specified system of multipole magnets. There are NO curves of data computed, each containing N1 data points. The computations are made by using Eq. (7). For instance assume that the system has N4 multipoles of degree N and that $f_{nj}(\theta,\phi)$ represents (as in Eq. (7)) the normal component of the magnetic field from the jth multipole of degree N. Then the total magnetic field $f_n(\theta,\phi)$ for all multipoles of degree N is

$$\mathbf{f}_{\mathbf{n}}(\theta, \boldsymbol{\varphi}) = \sum_{\mathbf{j}=1}^{NM} \mathbf{f}_{\mathbf{n}\mathbf{j}}(\theta, \boldsymbol{\varphi})$$
 (19)

If NH is the total number of different degrees for the system of multipoles then the normal component of the magnetic field for the total system is

$$\mathbf{f}(\theta, \varphi) = \sum_{N=3}^{NH} \mathbf{f}_{n}(\theta, \varphi).$$
 (20)

The program sets up the data array F(I,J) in this manner. (F(I,J) is defined in Eq. (2).) The data array is then written onto the data file DATD24. The file can then be used with either program SA2024 or program SA3024. A data tape can also be made of this file by listing the file under SYSTEM/BASIC with the tape punch unit on.

Sample Problems

- 41. SA4024 was used to compute the data for several examples. These are listed in Appendix H and in Figures 10 through 24. BN4024 is the binary version of SA4024. When executing the program via INTERCOM only the first nine binary records are used. The first section in Appendix H presents the input and output data for the sample problem illustrated in Figure 5. The instrumentation inaccuracy was assumed to be ± 1.0 gamma by setting EG = 1.0. The positions for the measurements of the data were considered to have inaccuracies of ± 0.2 degrees (EA = 0.2). set of data curves were assumed to be offset by 25.0 gammas (ED = 25.0). The data curves representing the simulated measurements are listed on page H-3. Section II of Appendix H contains the data file DATO24 that was generated with this data in a format like the data tape. In Section III of Appendix H the sample problem and several other problems were submitted to BATCH. The resulting data was also plotted. The data in Figure 10 for the sample problem is nearly identical to the data in Figure 9. The remaining examples in section III represent the individual and combined data for the first eight spherical harmonics $(n = 1, 2, \dots, 8)$ of the sample problem. These will be discussed in more detail in later paragraphs.
- 42. SA4024 was also used to show data curves for individual components of dipole and quadrupole moments. These are included in Figures 11 through 24. A small diagram is also included on each figure to illustrate the particular component that is represented by the curves. Curves are shown for components in both spherical and rectilinear coordinates according to Eqs. (9) and (10).

PROGRAM SA5024

Introduction

43. The program SA5024, listed in Appendix I, was devised to simplify the error studies. It performs functions similiar to both programs SA3024 and SA4024, i.e., SA5024 is both a data generation and a data analysis program. A system of multipole magnets is specified in the input data to represent the satellite as in SA4024. Since the data is analyzed as it is generated it is not written onto a data file as in SA4024. However, the program does include the plotting option when executing in the BATCH mode. Also, the integration option discussed in paragraphs 25 through 32 is included. The primary subprograms in SA5024 perform most of the functions already described in the sections on SA3024 and SA4024.

Input Data

44. The input data for SA5024 resembles the input data for the program SA4024 since it consists mostly of specifications for multipole magnets and data errors. The data is entered in the following order:

a. First line of data or data card - format: (715)

- NO The number of curves of data (NO is even and < 16.)
- N1 The number of equally spaced data points per curve from 0 through 360 degrees colatitude (N1 is odd and \le 33. The first and last data points for each curve correspond to measurements at 0 degrees colatitude.)
- NH1 The total number of different harmonics (degrees) of multipole magnets to be considered
- NH2 The harmonic number (degree) representing the highest degree spherical harmonic term to be computed from the data (NH2 = 1 for dipoles, 2 for quadrupoles, etc.)
- IP1 The parameter that determines whether or not the data is to be interpolated and plotted (IP1 ≠ 0 means that the data will be interpolated and plotted.)

- IF2 The parameter that determines whether or not the magnetic data is to be printed (IP2 ≠ 0 means that the data will be printed.)
- Tw The parameter that determines which integrating scheme is to be used (TW = 0 means that the exact, algebraic scheme is to be used.)

b. Second line of data or data card - format: (5F8.4)

- R1 The radius of the measurement sphere in inches
- EG The error (in gammas) to be randomly inserted into the data to represent instrumentation inaccuracies
- EA The angular error (in degrees) to be randomly inserted into the data to represent measurement position errors
- ED The constant error (in gammas) to be inserted into the data to represent offset in the instrumentation (this will be analyzed as monopole moment)
- PY The scale factor (gammas/inch) for the y-axis if the data is to be plotted (if PY = 0.0 a factor will be computed from the data.)

c. Third line of data or data card - format: (7AlO)

F9 - The format for reading and printing the spherical coefficients A(I) and B(I), e.g., (1H ,7E10.4)

All of the following data is repeated "NH" times:

d. Next line of data or data card - format: (215)

- NN The harmonic number (degree) of the multipole data being read in (NN = 1 for dipoles, 2 for quadrupole, etc.)
- NM The number of multipoles with harmonic number NN

The following data is repeated "NA" times:

e. Next lines of data or data cards - format: (3F8.4)

F - The position vector (in inches) of the multipole in rectilinear coordinates (F_x, P_v, P_z)

f. Next lines of data or data cards - format: F9

A(I) - The spherical coefficients A_{NN}^{I-1} for the multipole of degree NN where $I=1,2,\cdots,NN+1$ (The order of the $I\underline{th}$ coefficient is I-1.)

g. Next lines of data or data cards - format: F9

B(I) - The spherical coefficients B_{NN}^{I} for the multipole of degree NN where $I=1,2,\cdots,NN$. (The order of the Ith coefficient is i.).

(The relationships between spherical and rectilinear coefficients for dipoles and quadrupoles are given in Eqs. (9) and (10).)

Output Data

45. Initially, the program SA5024 computes the simulated measurement data as in Eqs. (19) and (20). Next, the spherical harmonic coefficients are computed according to Eq. (6). The program also computes the exact dipole moment from the multipole specifications. This value is compared with the dipole moment computed from the simulated measurement data. The percent error is printed as part of the output data.

Sample Problems

- 46. Appendix J contains the input and output data for several problems using SA5024. As in the other programs the binary version of SA5024 is the file BN5024. When executing the program via INTERCOM, only the first 15 binary records are used. In the first section of Appendix J an analysis was conducted of the sample problem illustrated in Figure 5. The parameters EG, EA, and ED were all set to zero (page J-1) so that no simulated errors were inserted into the data.
- 47. Figure 25 shows eight curves of the computed data for the three dipoles in the sample problem. Actually, 16 curves, each containing 33 data points, were used in the computations (based on Eq. (12) and Table 1). These values for the

parameters NO and N1 allowed the computation of the spherical harmonic coefficients for the first eight multipole components. The program SA4024 was used to compute eight data curves for each multipole component to demonstrate the type of curves representing each component. These are presented in Figures 26 through 33. These were also combined and plotted by SA4024. Figure 34 displays the combined data. The first data curve (xz-plane) was chosen to further demonstrate the characteristics of spherical harmonic approximation. Figure 35 contains four curves. The first curve is the original data from the sample problem. Curve 2 represents the dipole component. Curve 3 represents the combination of dipole and quadrupole components. Curve 4 represents the combination of the first eight multipole components. The convergence of the series in Eq. (7) is not obvious from the coefficients computed in Section I of Appendix J. Table 2 summarizes the peak coefficients and the data peaks for each degree n. Although the magnitude of the peak coefficient increases with increasing n, the data peak (magnetic field at 96 inches) decreases. the first eight multipole components account for about 97 or 98 percent of the original data curves. This indicates that higher degree components are relatively insignificant.

TABLE 2
PEAK DATA FOR THE MULTIPOLE COMPONENTS OF THE SAMPLE PROBLEM

Degree n	$(\max_{0 \le m \le n} \{ A_n^m , B_n^m \})$	Data Peak (for 8 curves)
1	104	13.79
2	9472X10 ⁷	803.79
3	•2341X10 ¹⁰	839.34
4	.1545X10 ¹²	367.51
5	2812X10 ¹⁴	211.03
6	+.4533X10 ¹⁶	189.44
7	+.3541x10 ¹⁸	57 . 51
8	4517X10 ²⁰	35.47
	Original	1817.94
	Sum of Components	1786.61

48. Section II of Appendix J demonstrates the procedure for submitting the program SA5024 for BATCH execution. The data specifies two problems consisting of

offset dipoles. In the first problem the dipole is aligned parallel to the x-axis and offset along the x-axis. The resultant curves are presented in Figure 36. The second problem is a dipole aligned parallel to the y-axis and offset along the x-axis. These curves are presented in Figure 37. A small diagram is included in each figure to demonstrate the geometric configuration.

49. A small error study was made to demonstrate the relationship between the accuracy of the dipole analysis; the parameters NO, N1, and R1; and the measurement errors (represented by EG and EA). The sample problem in Figure 5 was again selected. This example has a resultant dipole moment of 1000 gauss-cm³, but the magnetic field from this dipole component is embedded in the large field from quadrupole and higher terms. Curve 2 in Figure 35 demonstrates this condition. Also Table 2 shows that the peak of the dipole curves is only 13.79 gammas cut of a total of 1817.94 gammas for the total system. Table 3 contains a summary of the study. Several different values of NO, N1, IW, R1, EG and EA were used. The indications are that increasing R1 doesn't help much if EA and EG are too large. Also, there isn't much improvement in the accuracy of the computations when using the exact integration scheme (i.e., when setting IW = 0). Probably the most significant observation is that the parameter EA, representing position errors, has a much greater effect on the analysis accuracy than the parameter EG, representing instrumentation errors.

MAXIMUM ERROR VERSUS PARAMETRIC VARIATIONS IN COMPUTING THE DIPOLE MOMENT FOR THE SAMPLE PROBLEM TABLE 3

		Ī	Dipole Moment 1	Dipole Moment Error (gauss-cm ³	(2)		
			Parame	Parameters IW, Rl, EG, EA	G, EA		
IN ON	1,96,0,0	1,96,1,1	1,96,5,2	1,72,1,1	1,72,5,2	1,120,1,1	0,72,1,1
6, 13	-128 (x)	-135 (y)	-239 (y)	-2450 (x)	-2510 (x)	868 (x)	-2430 (x)
8, 17	63 (x)	653 (y)	1320 (y)	1760 (y)	3590 (x)	395 (y)	1780 (y)
4, 25	(x) 167	887 (x)	1470 (y)	7420 (x)	8390 (x)	500 (y)	7440 (x)
6, 25	-54 (x)	-734 (y)	1440 (y)	-1160 (y)	-2170 (y)	- 462 (y)	-1160 (y)
8, 25	6.3 (x)	- 407 (x)	-785 (x)	220 (y)	-505 (x)	-298 (x)	223 (y)
10, 25	-2.8 (x)	-515 (x)	-1030 (x)	-1080 (x)	-2200 (x)	-306 (x)	-1080 (x)
12, 25	-2.7 (x)	-887 (x)	-1730 (x)	-1620 (x)	-3250 (x)	-570 (x)	-1620 (x)
Minimum d dipole ba	Minimum detectable dipole based on R1 & EG	73	363	31	153	142	31

			7
ERROR	EA	ERROR	the program con
-66 (x)	7	1003 (y)	-620 gauss-cm
23 (x)	α	-854 (x)	The letter con
-6.8 (x)	а	505 (y)	indicates the
-10.9 (y)	.5	362 (x)	the error.
-2.3 (y)	.25	-197 (x)	
-2.8 (x)	.125	(x) 95	

-2.7(x)

-2.8 (x) -2.7 (x)

.25 .5

instead of +1000 gauss-cm³ dipole component containing emputed a dipole moment of Note: An error of -1620 gauss-cm³ means that tained in parentheses

NO, NI, IW, RI = 12, 25,

Ę

α н

4

Chapter 4

PRINCIPAL SUBPROGRAMS

INTRODUCTION

50. The programs described in the preceding sections were constructed to utilize several algorithms which were incorporated into functions and subroutines. These include algorithms for computing the spherical harmonic coefficients, computing the vector magnetic field emanating from a multipole magnet, computing the associated Legendre Polynomials, computing the Schmidt polynomials, and interpolating and plotting data curves. The subprograms have been code in a manner which makes them useful as building blocks for other programs. They are discussed separately in the following paragraphs.

SUBROUTINE AMPMINT

51. The subroutine AMPMNT is used to compute the spherical coefficients A_n^m and B_n^m for the data array F(I,J). The computation is based on Eq. (6). The subroutine is constructed to compute the coefficients for only one degree at a time. The calling sequence is

CALL AMPMNT (NO, N1, N, R1, F, P, A, B)

where the arguments are defined as follows:

a. Input

- NO The number of curves of data
- N1 The number of equally spaced data points per curve from 0 through 360 degrees colatitude
- N The degree of the spherical harmonic coefficients to be computed
- Rl The radius of the measurement sphere in inches

- F(IJ) The measured data for IJ = I + (J 1)·N1, I = 1,2,···,N1, and $J = 1,2, \cdot \cdot \cdot$,NO (The data is stored in a one-dimensional array to conserve storage, i.e., equating the one-dimensional array to the two-dimensional array in Eq. (6) gives F(IJ) = F(I,J).)
- P(I) The first "(N1 + 1)/2" weighting factors Y(I) in Eq. (6), i.e., P(I) = Y(I) for $I = 1, 2, \dots, (N1 + 1)/2$.

b. Output

- * A(M + 1) The spherical coefficients A_n^m for M = 0,1,2,...,N (see Eq. (8))
 - B(M) The spherical coefficients B_n^m for $M = 1, 2, 3, \dots, N$ (see Eq. (8)).
- 52. There are several other subroutines that are used to support AMPMNT in addition to the standard FORTRAN IV machine routines. AMPMNT internally calls a subroutine labeled POLVAL which in turn uses functions labeled SPNM, PNM, and ANF. These routines are used to compute the appropriate values for the Schmidt polynomials $P_n^m(\cos(\theta(I)))$ in Eq. (6). Also, the weights P(I) are set up externally by special subroutines before being input to the AMPMNT subroutine. This process requires the use of subroutines labeled WGTl, WGT2, WGT3, and GAUSEL. Listings of all of these subroutines are included in Appendix I.

SUBROUTINE AMPFLD

53. The subroutine AMPFLD is used to compute the magnetic field at the point \overline{R} from a multipole magnet of degree n centered at the point \overline{P} . The magnet is specified in terms of the spherical harmonic coefficients A_n^m and B_n^m . The calling sequence is

where the arguments are defined as follows:

a. Input

R(I) - The rectilinear coordinates (in inches) of the point at which the field is to be computed (R(1) = x-coor., R(2) = y-coor., and R(3) = z-coor.)

P(I) - The rectilinear coordinates (in inches) of the center position of the multipols magnet (P(1) = x-coor., P(2) = y-coor., and P(3) = z-coor.)

N - The harmonic degree of the multipole magnet

$$A(M + 1)$$
 - The spherical coefficients A_n^m for $M = 0,1,2,\dots,N$ (see Eq. (8))

$$B(M)$$
 - The spherical coeficients B_n^m for $M = 1, 2, \dots, N$ (see Eq. (8))

b. Output

F(I) - The total magnetic field in rectilinear coordinates ($H_x = F(1)$, $H_y = F(2)$, and $H_z = F(3)$).

54. The subroutine computes the total magnetic field vector for a single multipole magnet. The computations are based on relationships that are similiar to Eq. (7) except that only a single multipole magnetic (N is fixed) is considered. Also, the subroutine gives all three rectilinear components of the magnetic field instead of just the radial component. The relationships are presented below using terminology that can be found in references (b) and (c). Let \overline{R}_1 be defined as the vector from the magnet to the point \overline{R} , i.e.,

$$\overline{R}_1 = \overline{R} - \overline{P} \tag{21}$$

where \overline{R} and \overline{P} are as defined above. Next, let

$$\overline{R}_1 = (R_1, \varphi, \theta) \tag{22}$$

be the representation of \overline{R}_1 in spherical coordinates where R_1 is the vector length, θ is the colatitude, and ϕ is the longitude relative to a system of coordinates centered at the multipole position. Now, define an orthonormal set of vectors \overline{r} , $\overline{\theta}$, and $\overline{\phi}$ in spherical coordinates as

$$\vec{r} = \cos \varphi \sin \theta \vec{i} + \sin \varphi \sin \theta \vec{j} + \cos \theta \vec{k}$$
 (23a)

$$\overline{\varphi} = -\sin \varphi \, \overline{\mathbf{i}} + \cos \varphi \, \overline{\mathbf{j}} \tag{23c}$$

where \overline{i} , \overline{j} , and \overline{k} represent the orthonormal set of vectors along the x, y, and z-axis, respectively (see Figure 1). It can be seen that

$$\overline{\mathbf{r}} = \overline{F}_1/R_1. \tag{24}$$

Then, the total field vector $\overline{H}_n(\overline{R})$ for the nth degree multipole is given as

$$\overline{H}_{n}(\overline{R}) = H_{nr}(\overline{R})\overline{r} + H_{n\theta}(\overline{R})\overline{\theta} + H_{n\varphi}(\overline{R})\overline{\phi}$$
 (25)

where

$$H_{nr}(\bar{R}) = [(n+1)/R_1^{n+2}] \sum_{m=0}^{n} (A_n^m \cos m\varphi + B_n^m \sin m\varphi) P_n^m(\cos \theta)$$
 (26a)

$$H_{n\theta}(\overline{R}) = (1/R_1^{n+2}) \sum_{m=0}^{n} (A_n^m \cos m\varphi + B_n^m \sinh m\varphi) [C_n^m P_n^{m+1}(\cos \theta) - \cos \theta P_n^m(\cos \theta)/\sin \theta]$$
(26b)

$$H_{n\varphi}(\overline{R}) = (1/R_1^{n+2}) \sum_{m=0}^{n} m(A_n^m \sin m\varphi - B_n^m \cos m\varphi) P_n^m(\cos \theta) / \sin \theta.$$
 (26c)

The coefficient C_n^m , in Eq. (26b), has the value

$$C_n^m = [(n - m)(n + m + 1)]^{\frac{1}{2}}$$
 for $(m > 0)$
= $[n(n + 1)/2]^{\frac{1}{2}}$ for $(m = 0)$.

Also, the terms which have $\sin \theta$ as a divisor are computed using the following identities:

$$2mP_{n,m}(\cos \theta)/\sin \theta = (n - m + 1)(n - m + 2)P_{n+1,m-1}(\cos \theta) + P_{n+1,m+1}(\cos \theta)$$
for $(m > 0)$

$$= 0 \text{ for } (m = 0)$$
(27)

$$P_{n}^{m}(\cos \theta) = \left\{ 2 \frac{(n-m)!}{(n+m)!} \right\}^{\frac{1}{2}} P_{n,m}(\cos \theta) \text{ for } (m>0)$$

$$= P_{n,0}(\cos \theta) \text{ for } (m=0).$$
(28)

The function $P_{n,m}(\cos\theta)$ represents the associated Legendre polynomial of degree n and order m. $P_n^m(\cos\theta)$ represents the Schmidt polynomial of degree n and order m. These polynomials are discussed in more detail in Appendix K. The radial component $f_n(\phi,\theta)$ of the magnetic field at the point \overline{R} is computed from the total field $\overline{H}_n(\overline{R})$ as

$$\mathbf{f}_{\mathbf{n}}(\varphi,\theta) = \overline{\mathbf{H}}_{\mathbf{n}}(\overline{\mathbf{R}}) \cdot \overline{\mathbf{R}}/(\overline{\mathbf{R}} \cdot \overline{\mathbf{R}})^{\frac{1}{2}}. \tag{29}$$

55. The subroutine AMPFLD uses several external subprograms including SPNM, PNM, ANF, SPCOOR, and SUM. These are listed in Appendix I. The subprograms SPNM, PNM, and ANF are used to compute the Schmidt and associated Legendre polynomials. The subroutines SPCOOR and SUM are used in mathematical operations with vectors. SPCOOR transforms a vector from rectilinear to spherical coordinates. SUM multiplies vectors and scalars, and then, adds the products.

FUNCTIONS PNM. SPNM. AND ANF

56. The function subprograms PNM, SPNM, and ANF are used in the generation of values for spherical polynomials. PNM computes the value of the associated Legendre polynomial $P_{n,m}(\mathbf{x})$ of degree n and order m at the point \mathbf{x} for $|\mathbf{x}| \leq 1$. (If m=0 the subprogram computes the value of the regular Legendre polynomial.) SPNM converts this value into the Schmidt function $P_n^m(\mathbf{x})$. ANF simply computes the factorial value for the integer N. Let \mathbf{y} represent a variable used in a computer program which is to be set equal to a polynomial value. Then the calling sequence for the subprograms is defined as follows:

$$y = P_n(x)$$
 is written as $Y = PNM(N,0,X)$ for $N \ge 0$ and $|X| \le 1$
$$y = P_{n,m}(x)$$
 is written as $Y = PNM(N,M,X)$ for $N \ge 0$, $M \ge 0$, and $|X| \le 1$
$$y = P_n^m(x)$$
 is written as $Y = SPNM(N,M,X)$ for $N \ge 0$, $M \ge 0$, and $|X| \le 1$.

The factorial subprogram is used as follows:

$$y = n!$$
 is written as $Y = ANF(N)$ for $N \ge 0$.

The development and use of these subprograms was reported in more detail in an internal technical note. This is included in Appendix K.

SUBROUTINE DATPLT

57. The subroutine DATPLT is used to interpolate and plot the curves of data. It is written to make use of either the GOULD electrostavic plotter or the CALCOMP 570 pen plotter. Most of the data curves in the enclosed figures were plotted on the CAPCOMP plotter. Figure 38 shows a set of data curves plotted on the GOULD plotter. These correspond to the curves in Figure 6. The routine sets up x and y-coordinate arrays for the magnetic field data F(IJ). A plotting symbol (the curve number) is used to mark each data point along the data curves. The data is plotted as magnetic field versus the angle of colatitude as shown in Figure 6. The calling sequence is

CALL DATPLT (NO, N1, F, YDIST)

where the argument list is defined of follows:

NO - The number of curves of data

N1 - The number of data points per curve

F(IJ) - The array of data curves for $IJ = J + (I - 1) \cdot N1$; $J = 1, 2, \dots, N1$; and $I = 1, 2, \dots, N0$

YDIST - The value in gamma to be used for one inch of the y-axis (If YDIST = 0.0 the subroutine PKY is used to determine a suitable scale for the y-axis.).

58. The subroutine uses the external subprograms CALCM1, FNCTON, and PKY for execution. CALCM1 is contained in special plotting packages of subprograms that is in the NOL subroutine library. There are two separate packages that can be loaded when using the subroutines DATPLT and CALCM1. The package labeled GOULD1 is loaded when plotting with the GOULD electrostatic plotter. The package labeled CALCM1 is loaded when plotting with the CALCOMP plotter. Also a tape (TAPE99) must be loaded with the CALCM1 package. The subprograms FNCTON and PKY are listed in Appendix I. FNCTON computes the Fourier coefficients for each curve of data. These are used to increase the point density of the data to be plotted to one point for every five degrees of colatitude. This turns out to be 12 points per inch on the graphs or a total of 73 points per curve. The subprogram PKY is used to determine a suitable scale for the y-axis if YDIST is zero.

SUBROUTINE FNCTON

59. The subroutine FNCTON is used to perform a Fourier analysis on a single-dimensioned array of data that represents the values along a curve at equally spaced intervals. The program is used primarily for interpolating data. The calling sequence is

where the argument list is defined as follows:

a. Input

F(I) - The data array representing the values of the curve at N equally space values $\theta(I) = 2\pi(I-1)/N$ for $I = 1, 2, \dots, N$

N - The number of data points

b. Output

- C(I) The array of Fourier amplitudes for $I = 1, 2, \dots, N2$
- CO The zero degree Fourier amplitude
- PHI(I) The array of Fourier phase angles for $I = 1, 2, \dots, N2$
- N2 The number of terms in the approximating Fourier series
- DEV The maximum difference between the data points and the curve defined by the Fourier series.
- 60. The coefficients are obtained by the following equations:

$$C_0 = (1/N) \sum_{I=1}^{N} F(I)$$
 (30)

$$Sl_{j} = (2/N) \sum_{I=1}^{N} F(I) \cdot \sin \left[2nj(I-1)/N\right]$$
 (31a)

$$Cl_{j} = (2/N) \sum_{I=1}^{N} F(I) \cdot \cos [2\pi j(I-1)/N]$$
 (31b)

$$C_{j} = (Sl_{j}^{2} + Cl_{j}^{2})^{\frac{1}{2}} \text{ for } j \neq N/2$$

$$= (Sl_{j}^{2} + Cl_{j}^{2})^{\frac{1}{2}}/2 \text{ for } j = N/2$$
(32)

$$PHI_{j} = tan^{-1}(C1/S1)$$
 (33)

for $j = 1, 2, \dots, N/2 + 1$.

61. This results in the approximation

$$F(I) \approx C_0 + \sum_{j=1}^{N2} C_j \sin \left[2\pi j(I-1)/N + PHI_j\right] \text{ for } I = 1,2,\dots N.$$
 (34)

Any other set of N¹ equally spaced values which begin at $\theta(1) = 0$ can be computed by substituting N¹ in place of N in Eq. (34). DATPLT uses the value of 72 for N¹.

Chapter 5

CONCLUSIONS

- 62. The computer programs presented in this report are part of a major effort at NOL to develop and improve magnetic test procedures on spacecraft. The effort involves the development and evaluation of both data acquisition and data analysis procedures. The Spherical Field Coil Facility at NOL is being instrumented to handle both the acquisition and analysis of the test data. The proposed specifications for the instrumentation were presented i reference (d). More detailed specifications for the data acquisition and analysis system were forwarded to NRL as an enclosure to reference (e). The facility is scheduled to be operational by the beginning of fiscal year 175. A technical report describing the facility should be published shortly thereafter.
- 63. There are other analysis projects to be completed. One is the compilation and publication of a reference manual containing the mathematical equations for dipole and quadrupole computations. This will simplify slide-rule calculations which are made during testing. Another project involves the conduct of a more elaborate error analysis using the computer programs described above. This will be necessary to evaluate the minimum detectable dipole moment under several different conditions.
- 64. It should be noted here that there are several other methods for estimating the dipole moment of spacecraft. The most effective method to use in any particular case depends on a number of things including the size of the spacecraft, the availability of a gimballing system, the desired accuracy of the compensation, the complexity and permanence of the spacecraft's magnetism, etc. The procedure based on the spherical harmonic analysis of the spacecraft's magnetism has proven to be both fast and accurate for NRL satellites. Many of the tests have been completed in less than four hours and with an accuracy which allows dipole moment compensation of all but about 100 out of 6000 gauss-cm³.

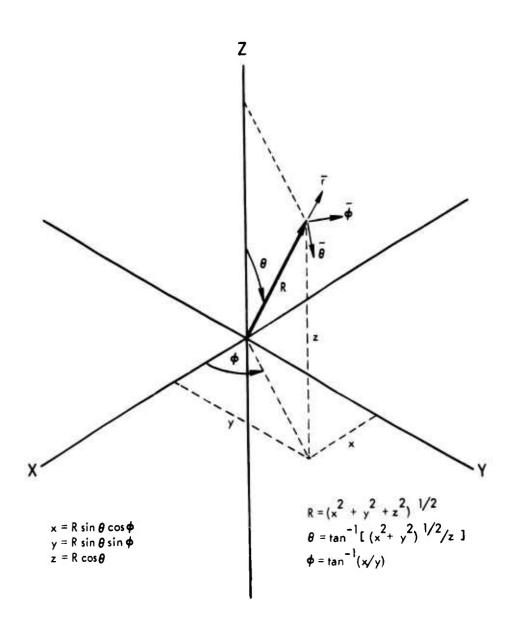


FIG. 1 ILLUSTRATION OF SPHERICAL POLAR COORDINATES

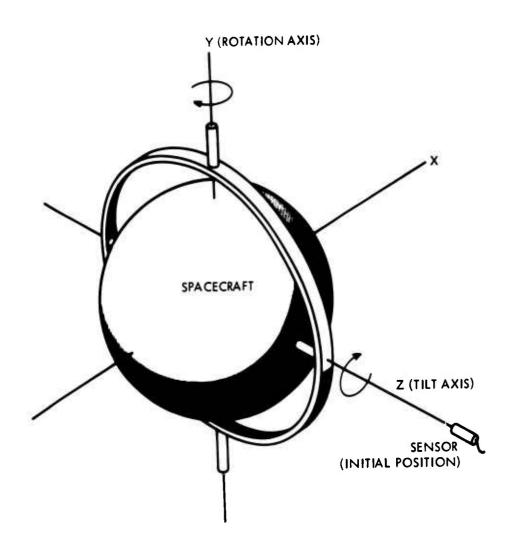
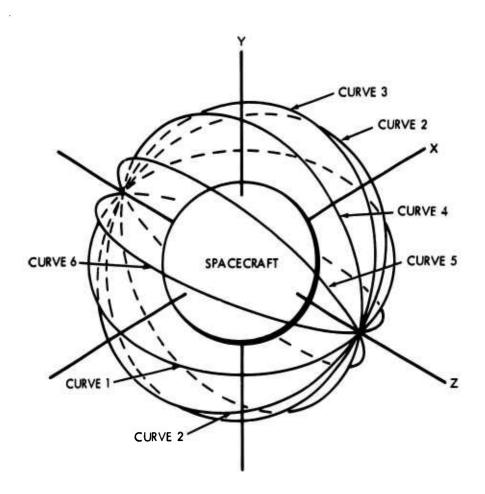
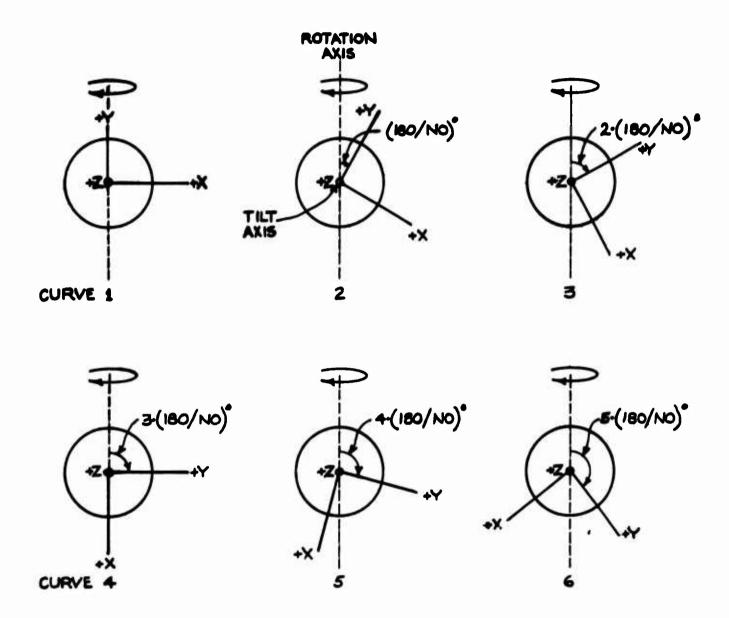
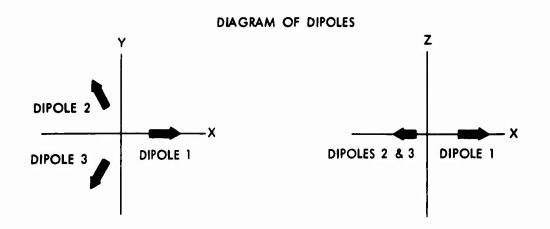


FIG. 2 DEGREES OF FREEDOM FOR MEASUREMENTS


FIG. 3 SPHERE OF MEASUREMENTS

Notes:

- 1. The diagrams are viewed from the sensor position.
- 2. The turntable rotation is clockwise.
- 3. Each curve begins with +z-axis directed at the sensor.

FIG. 4 SATELLITE INITIAL POSITIONS FOR NO = 6 (Viewed from sensor position)

PARAMETRIC VALUES

PARAMETER	сомр.	DIPOLE		
		1	2	3
POSITION VECTOR	x	39.000	-21,000	-21,000
	Y	0.000	36, 373	-36.3 <i>7</i> 3
	Z	0,000	0,000	0,000
DIPOLE MOMENT	D _X (A(2))	31,000.	-15,000.	-15,000.
	D (B(1))	0.	25,980.	-25,980.
	D _z (A(1))	0.	0.	0.

FIG. 5 ILLUSTRATION OF SAMPLE PROBLEM

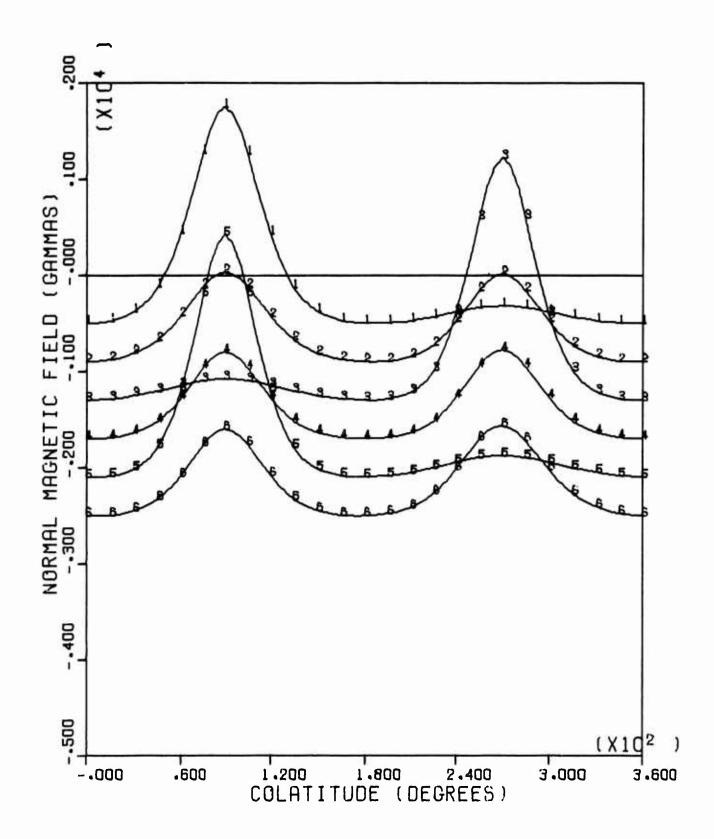


FIG. 6 TYPICAL DATA CURVES

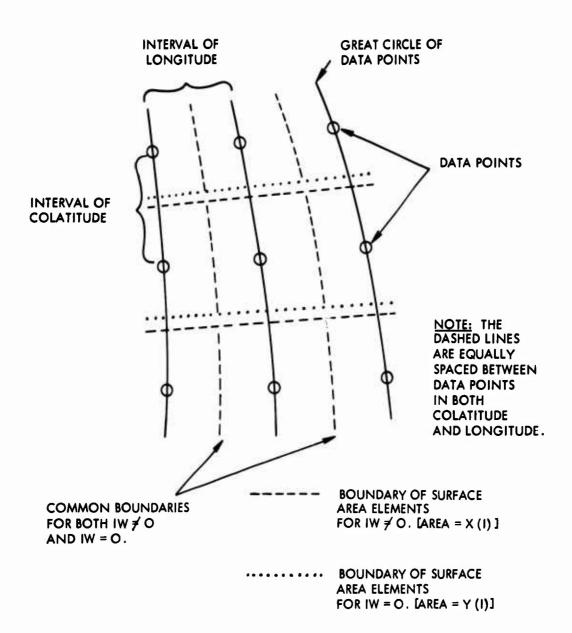
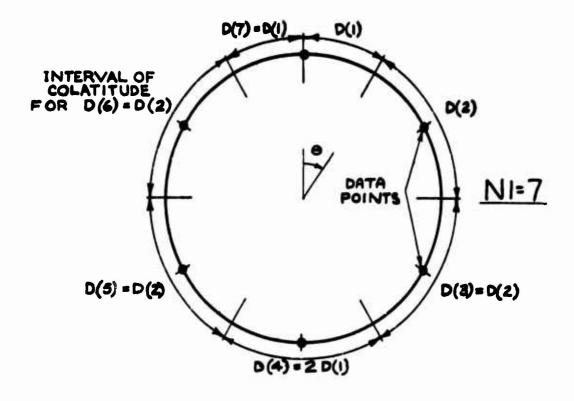



FIG. 7 EXAMPLE OF SURFACE AREA ELEMENTS ASSIGNED TO DATA POINT

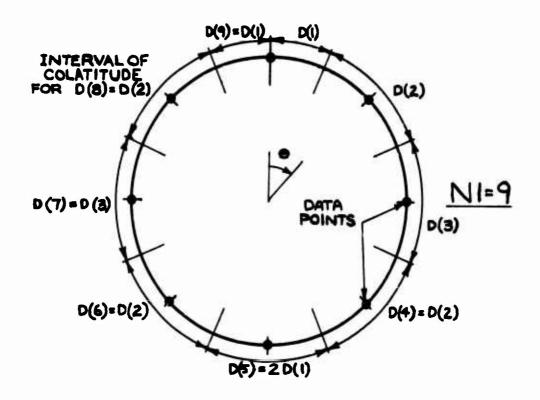


FIG. 8 EXAMPLES OF INTERVALS OF COLATITUDE



FIG. 9 DATA CURVES FROM SA3024 FOR SAMPLE PROBLEM

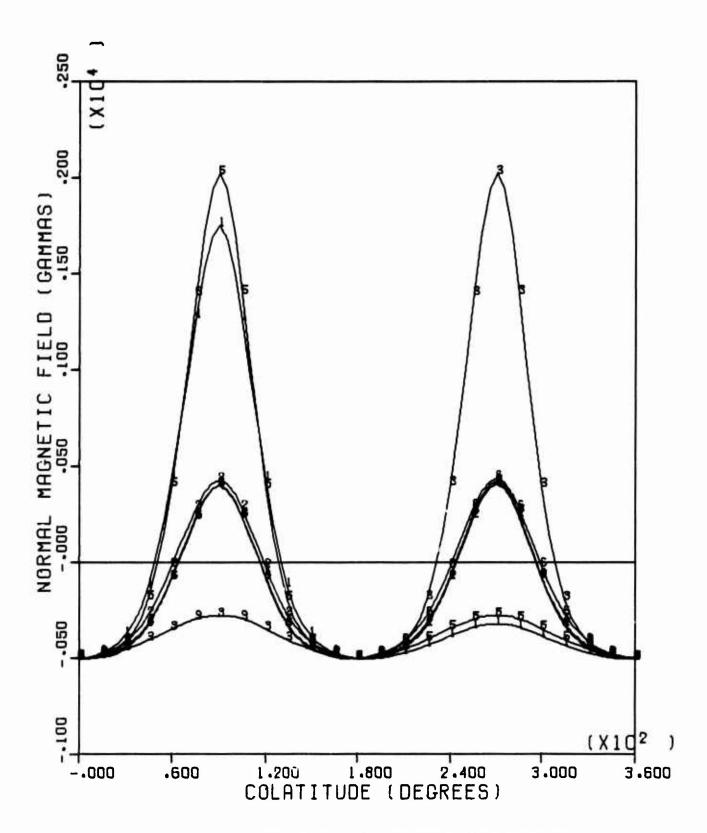


FIG. 10 DATA CURVES FROM SA4024 FOR SAMPLE PROBLEM

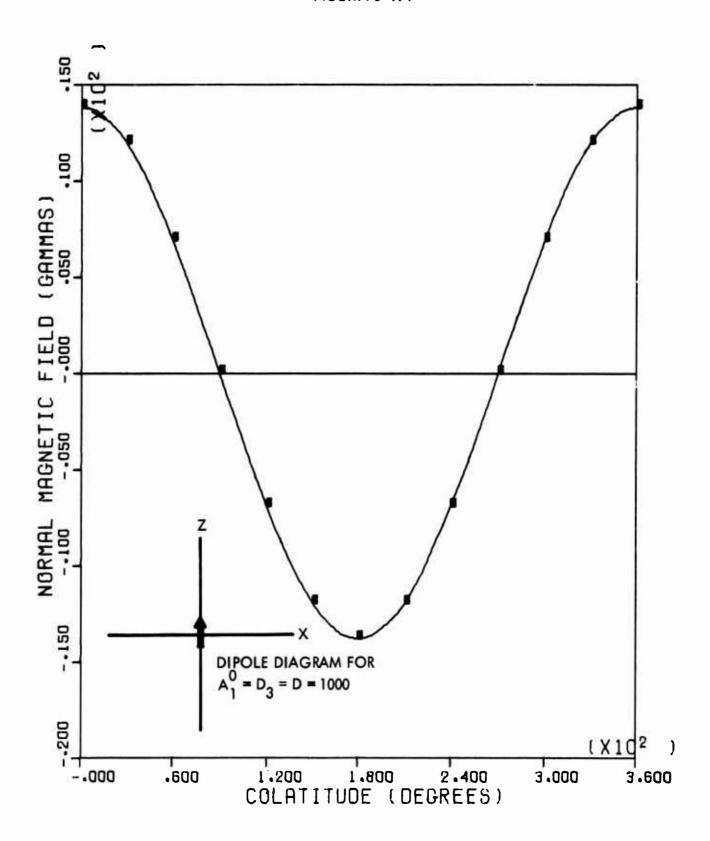


FIG. 11 DIPOLE CURVES FOR $A_1^0 = D_3 = 1000 \text{ GAUSS-CM}^3$

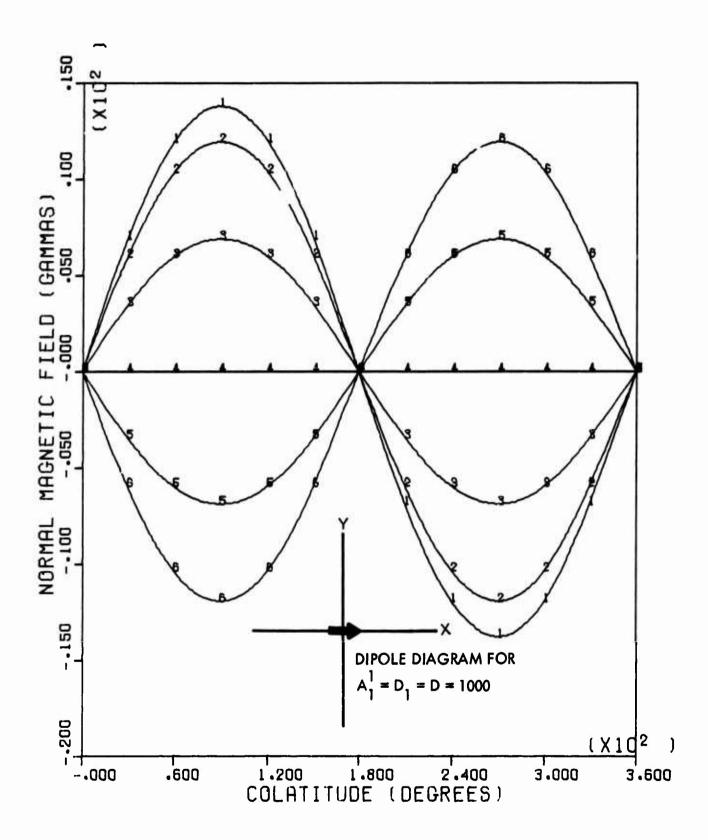


FIG. 12 DIPOLE CURVES FOR $A_1^1 = D_1 = 1000$ GAUSS-CM³

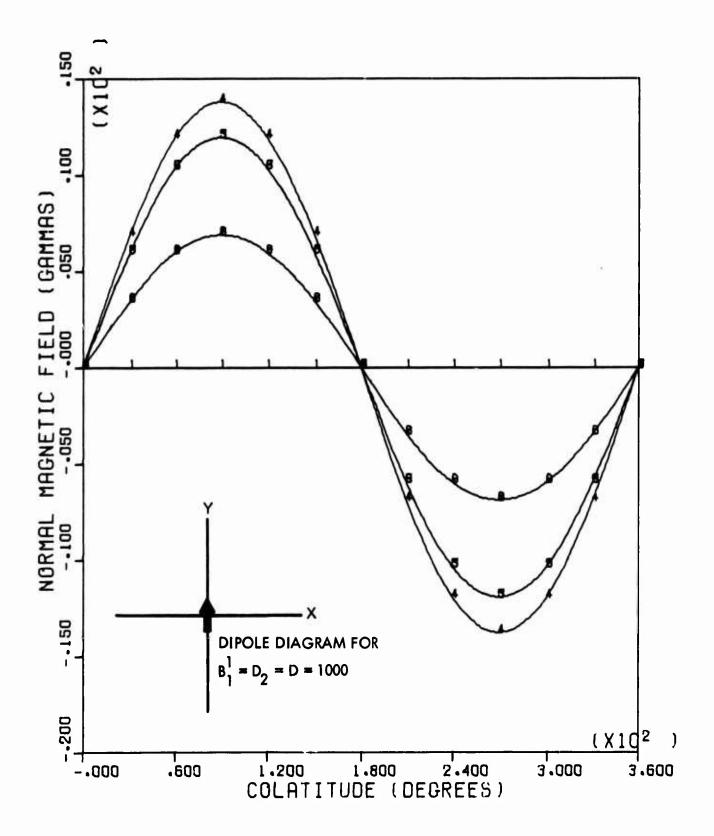


FIG. 13 DIPOLE CURVES FOR $B_1^1 = D_2 = 1000 \text{ GAUSS-CM}^3$

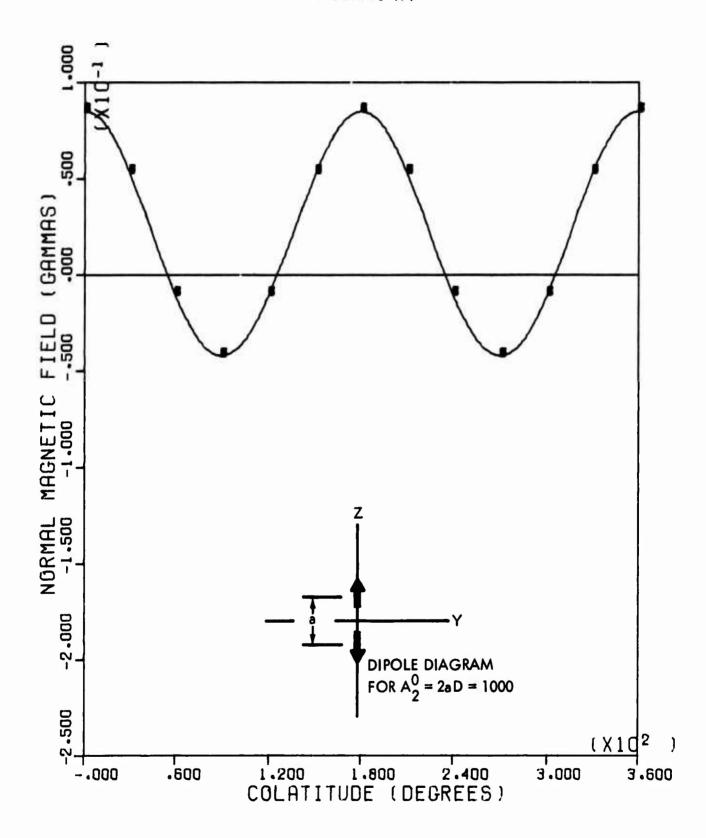


FIG. 14 QUADRUPOLE CURVES FOR $A_2^0 = 1000$ GAUSS-CM⁴

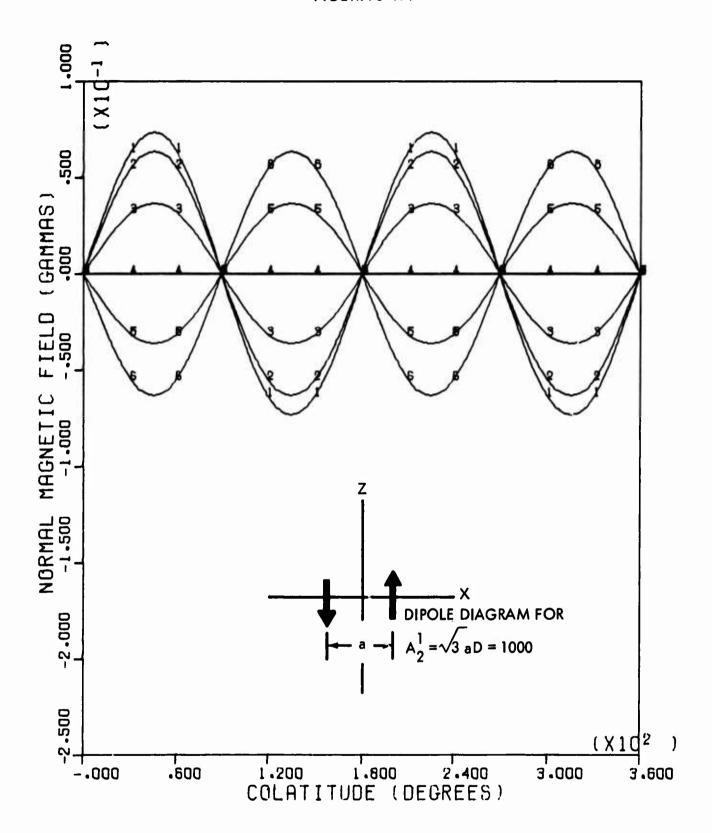


FIG. 15 QUADRUPOLE CURVES FOR $A_2^1 = 1000$ GAUSS-CM⁴

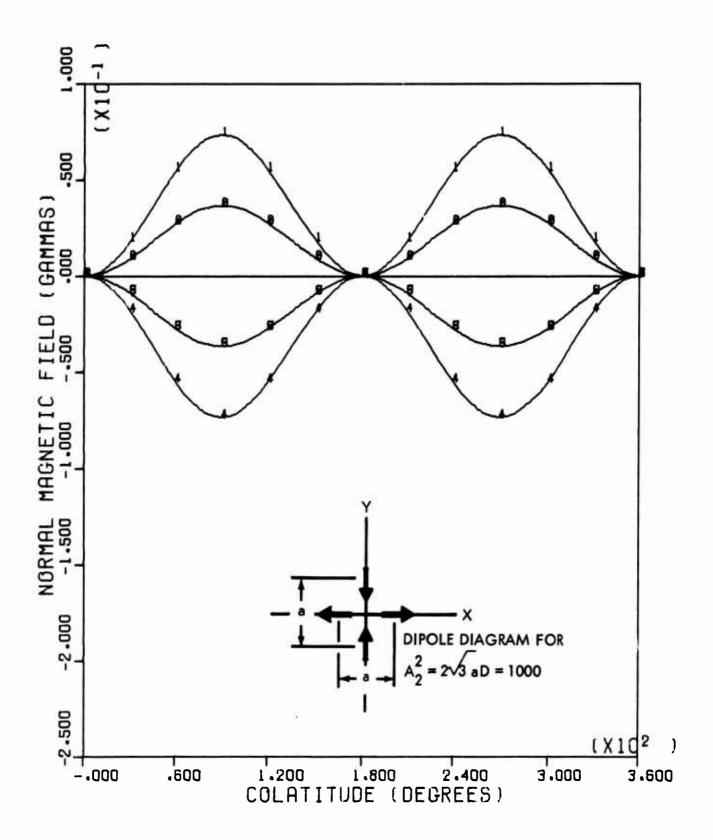


FIG. 16 QUADRUPOLE CURVES FOR $A_2^2 = 1000$ GAUSS-CM⁴

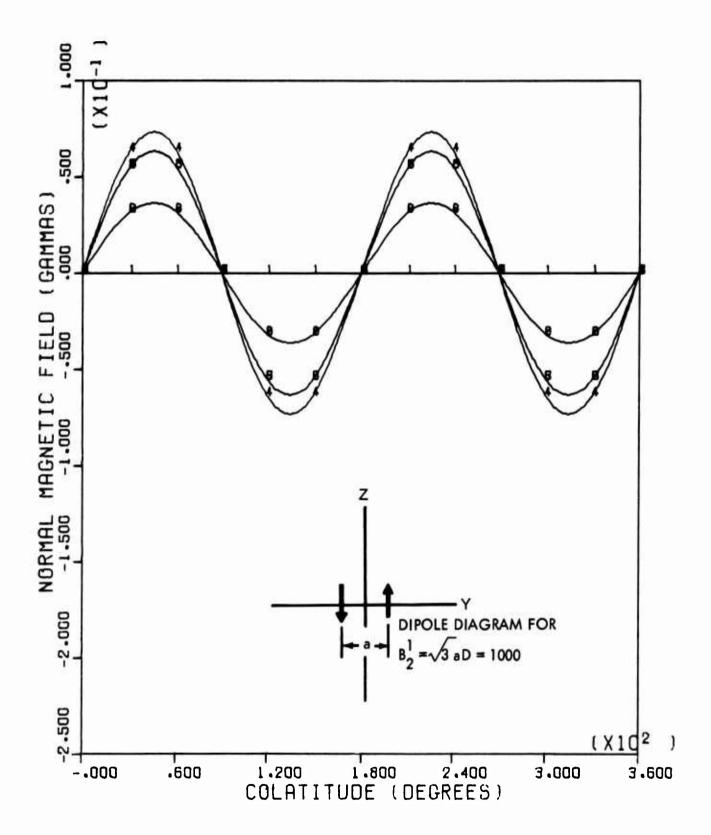


FIG. 17 QUADRUPOLE CURVES FOR $B_2^1 = 1000$ GAUSS-CM⁴

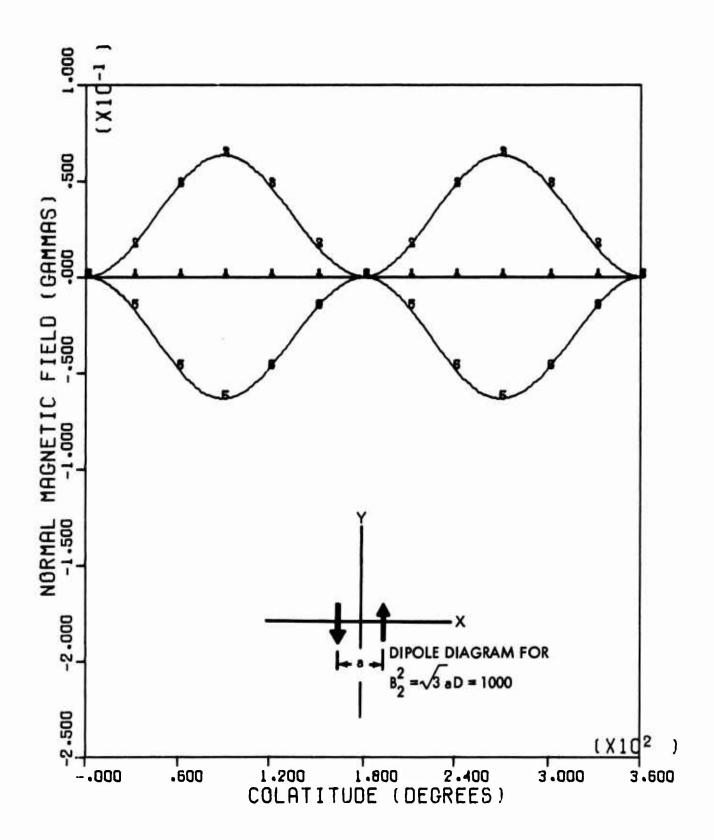


FIG. 18 QUADRUPOLE CURVES FOR $B_2^2 = 1000$ GAUSS-CM⁴

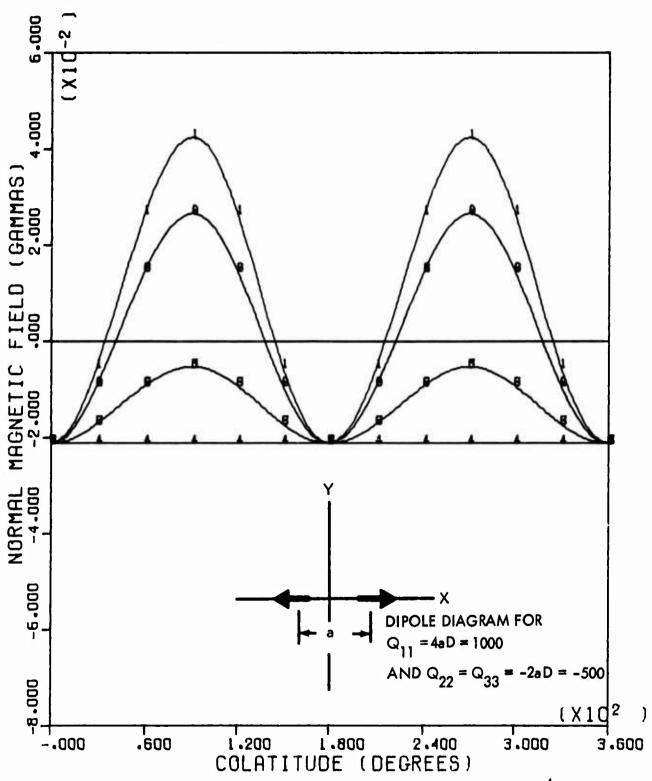
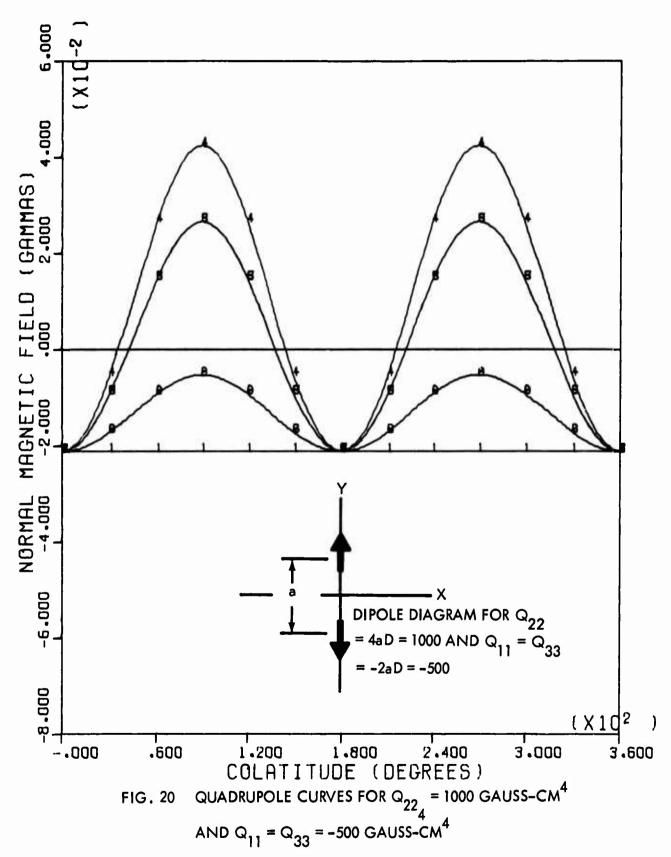



FIG. 19 QUADRUPOLE CURVES FOR $Q_{11_4} = 1000 \text{ GAUSS-CM}^4$ AND $Q_{22} = Q_{33} = -500 \text{ GAUSS-CM}^4$

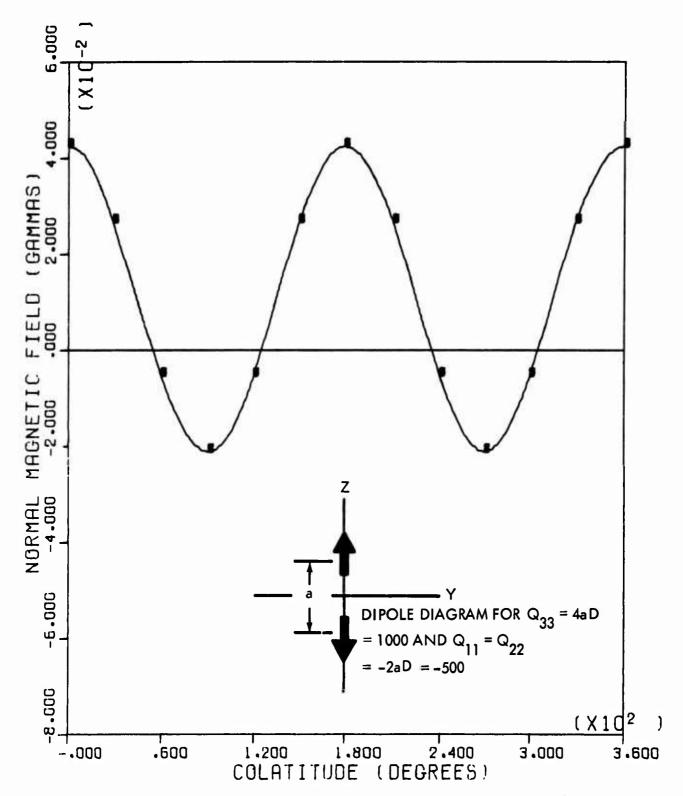


FIG. 21 QUADRUPOLE CURVES FOR $Q_{33} = 1000 \text{ GAUSS-CM}^4$ AND $Q_{11} = Q_{22} = -500 \text{ GAUSS-CM}^4$

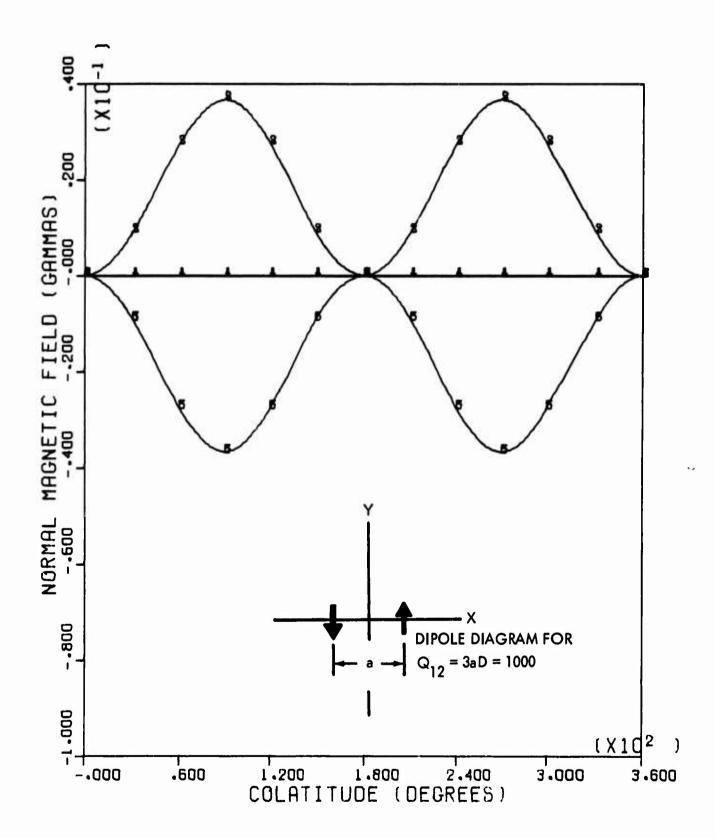
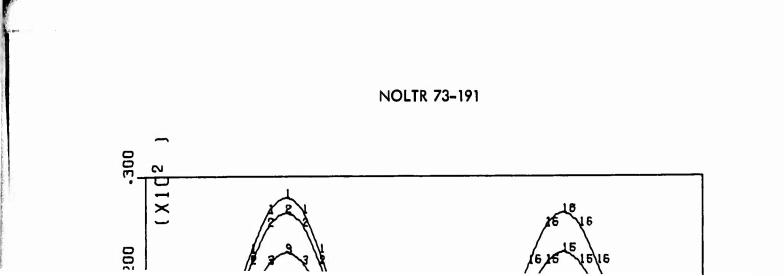



FIG. 22 QUADRUPOLE CURVES FOR Q₁₂ = 1000 GAUSS-CM⁴

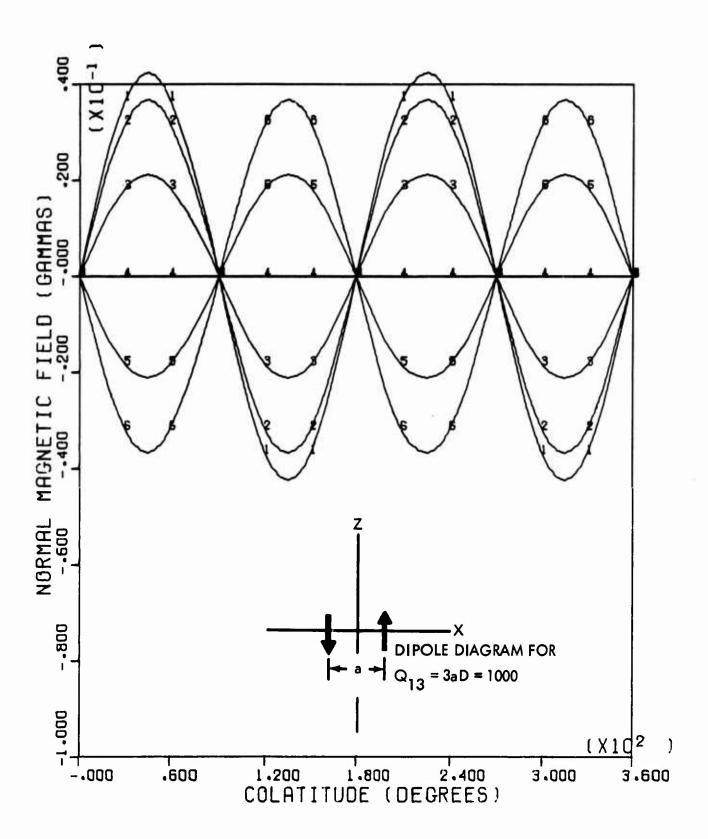


FIG. 23 QUADRUPOLE CURVES FOR Q₁₃ = 1000 GAUSS-CM⁴

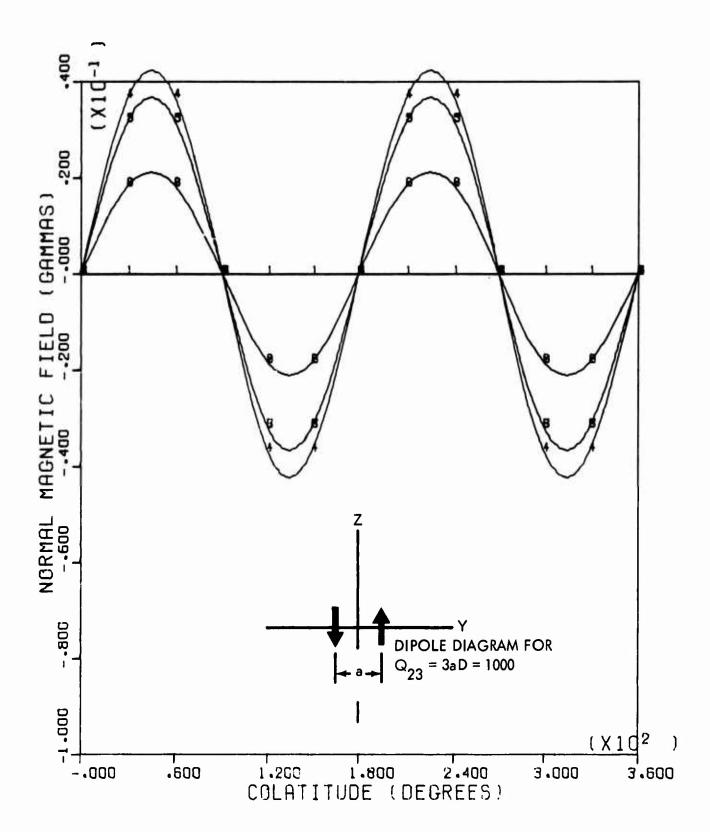


FIG. 24 QUADRUPOLE CURVES FOR Q₂₃ = 1000 GAUSS-CM⁴

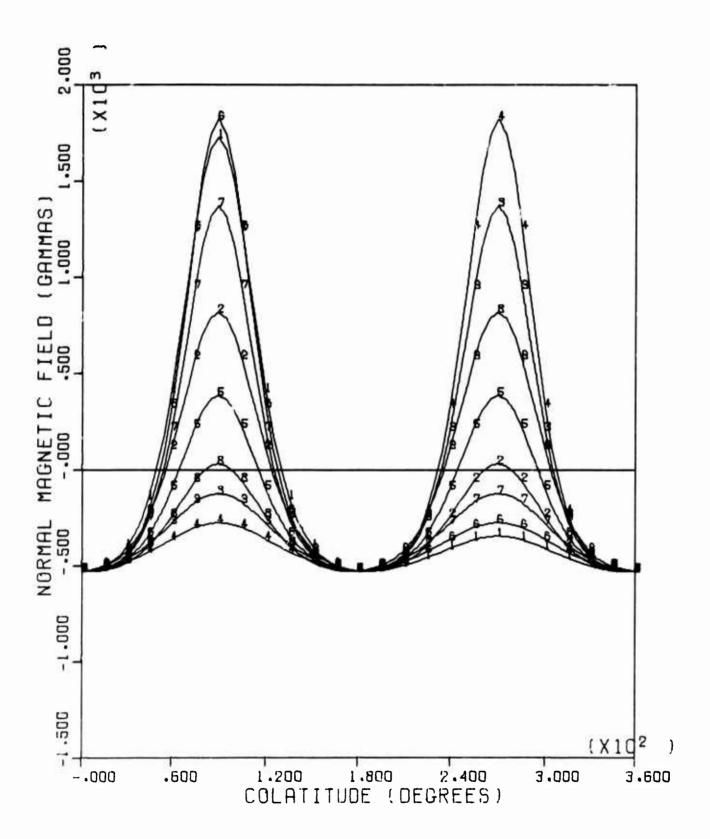


FIG. 25 DATA CURVES FROM SA5024 FOR SAMPLE PROBLEM

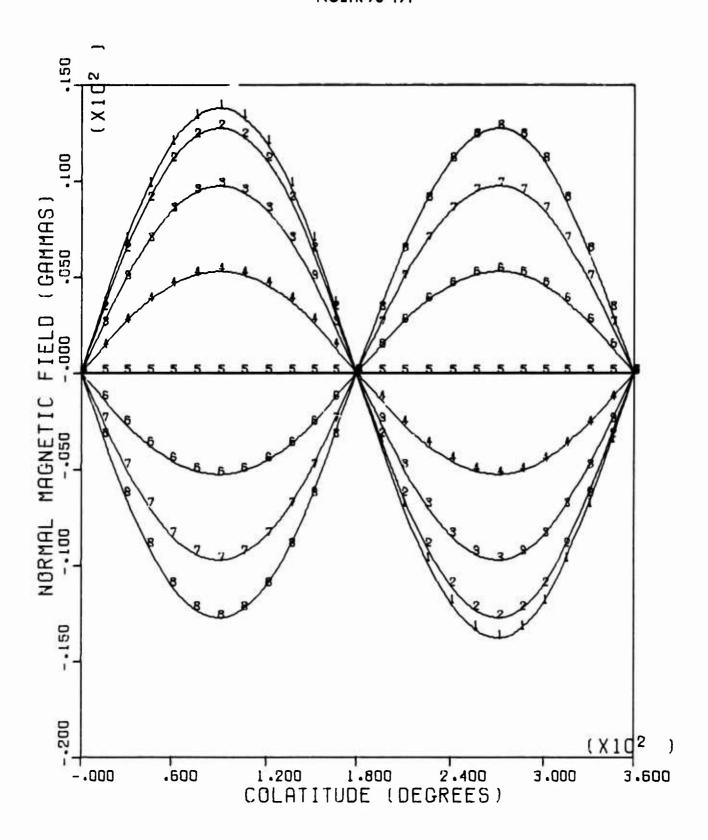


FIG. 26 MULTIPOLE COMPONENT OF DEGREE 1 (DIPOLE COMPONENT)

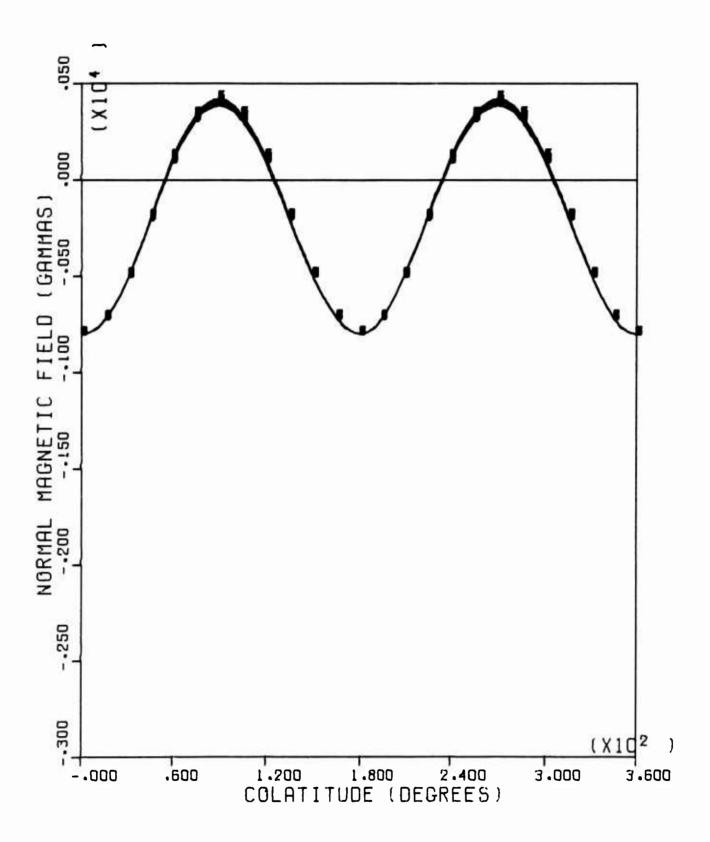


FIG. 27 MULTIPOLE COMPONENT OF DEGREE 2 (QUADRUPOLE COMPONENT)

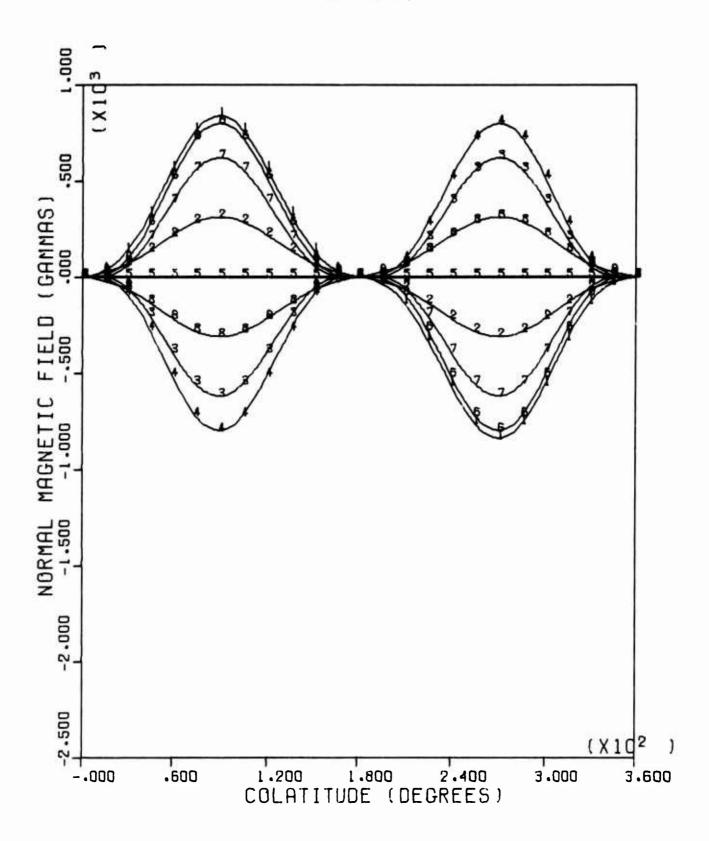


FIG. 28 MULTIPOLE COMPONENT OF DEGREE 3

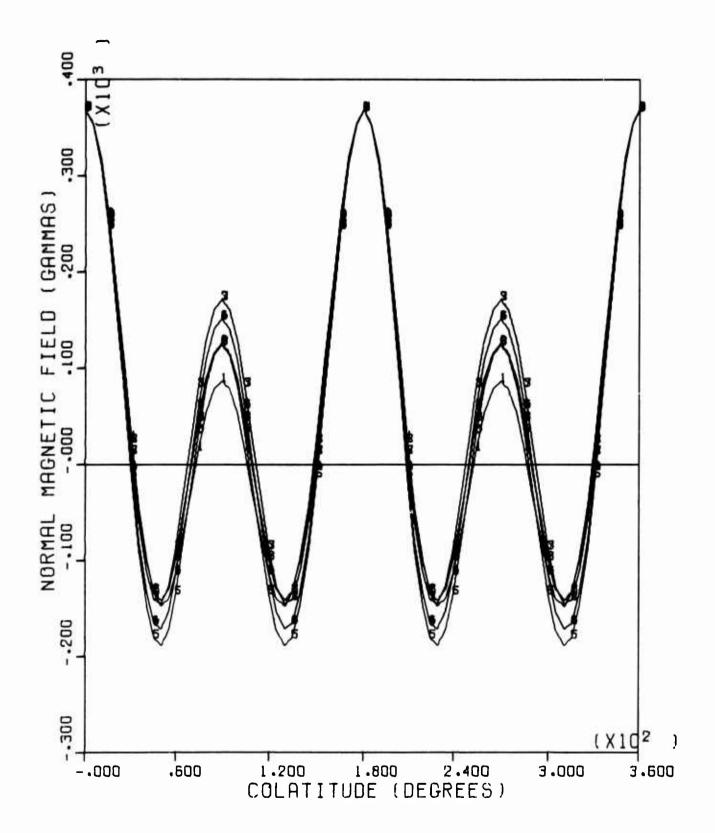


FIG. 29 MULTIPOLE COMPONENT OF DEGREE 4

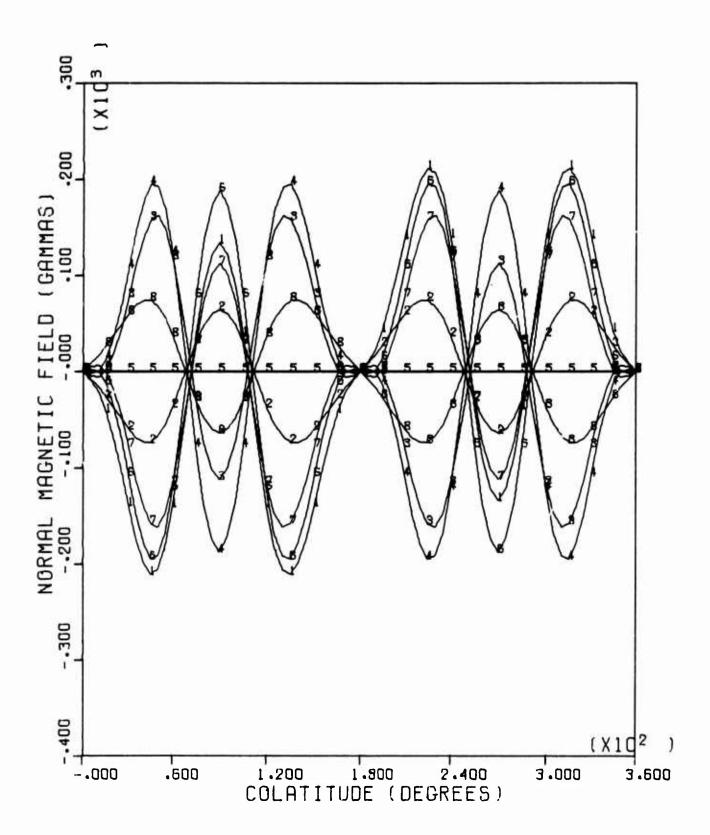


FIG. 30 MULTIPOLE COMPONENT OF DEGREE 5

FIG. 31 MULTIPOLE COMPONENT OF DEGREE 6

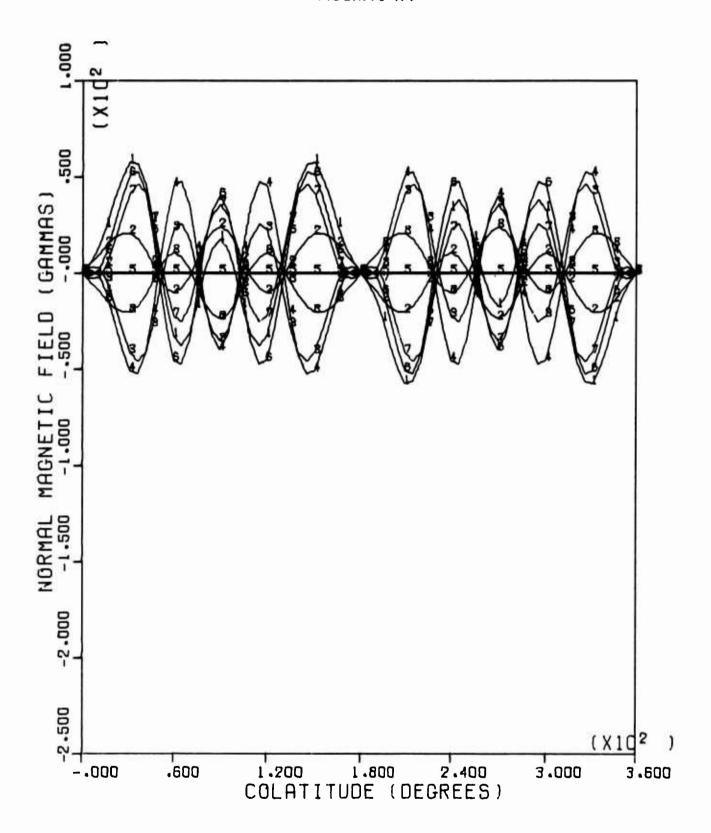


FIG. 32 MULTIPOLE COMPONENT OF DEGREE 7

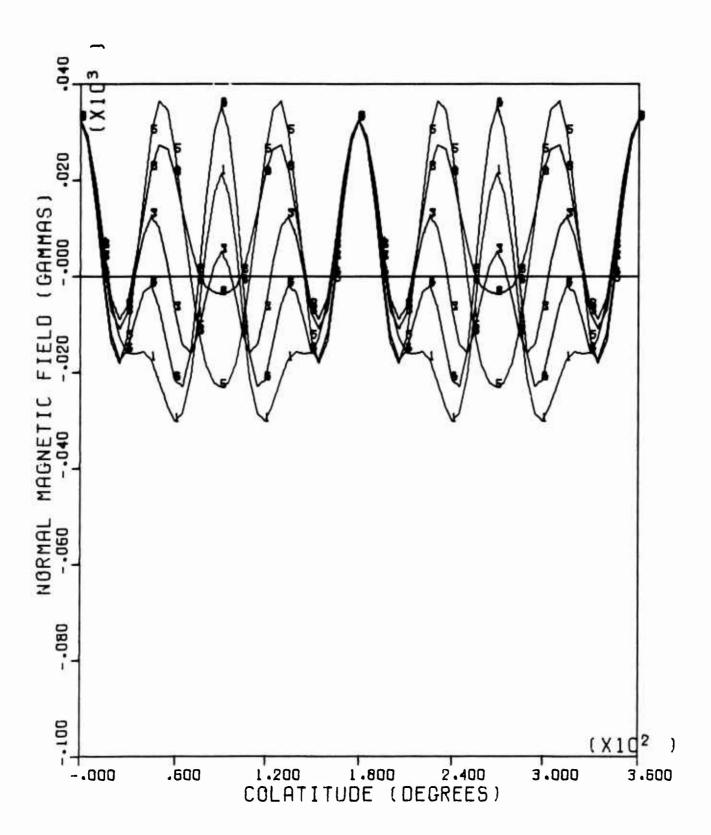


FIG. 33 MULTIPOLE COMPONENT OF DEGREE 8

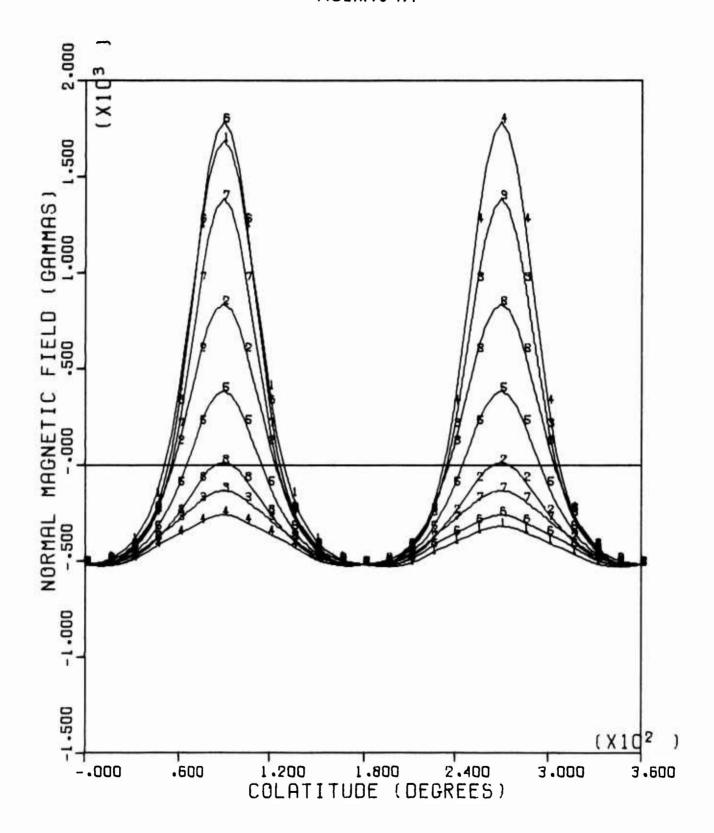


FIG. 34 SUMMATION OF FIRST EIGHT MULTIPOLE COMPONENTS

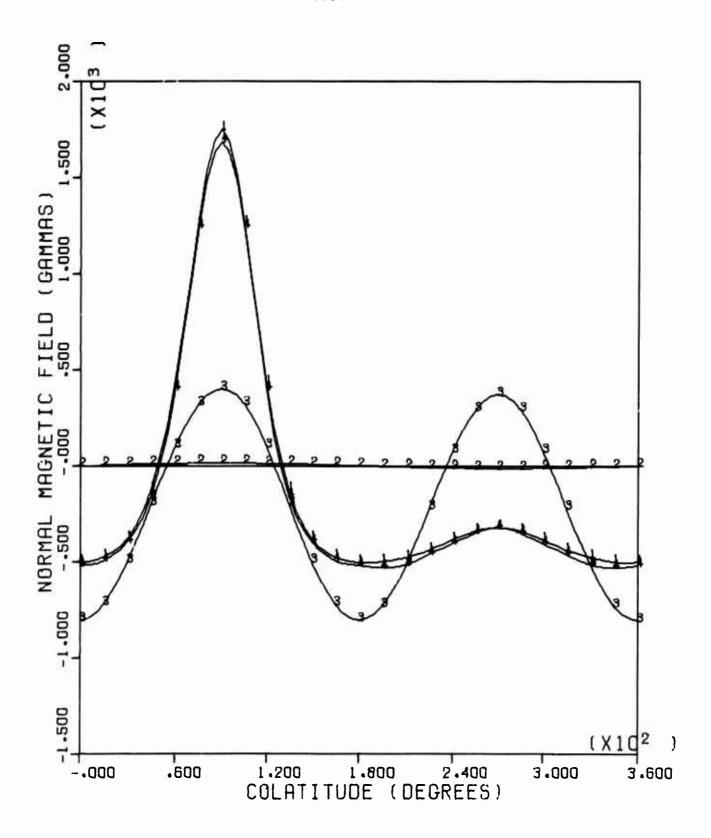


FIG. 35 INDIVIDUAL CURVES DEMONSTRATING APPROXIMATION ACCURACY

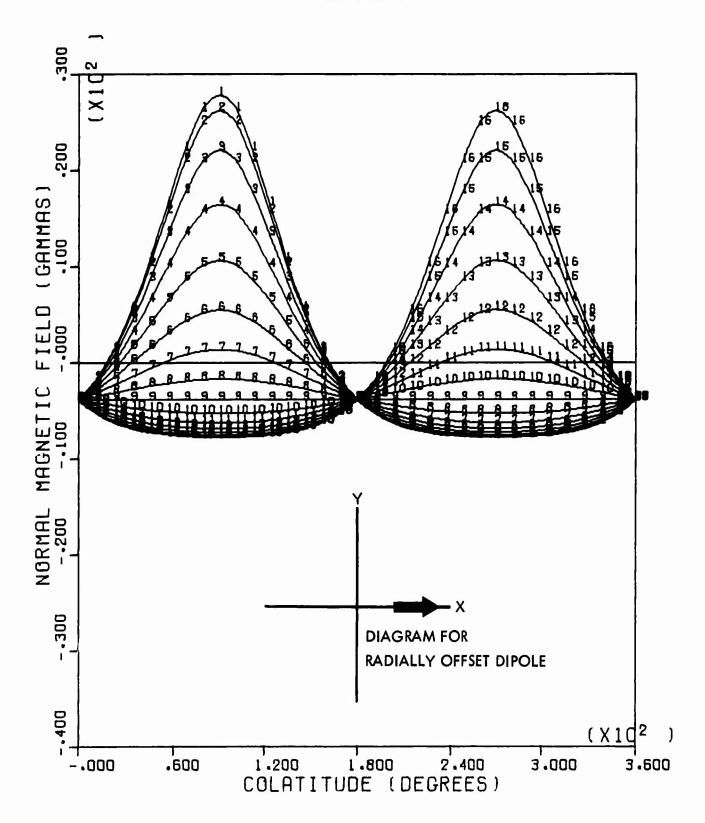


FIG. 36 DATA CURVES FOR RADIALLY OFFSET DIPOLE

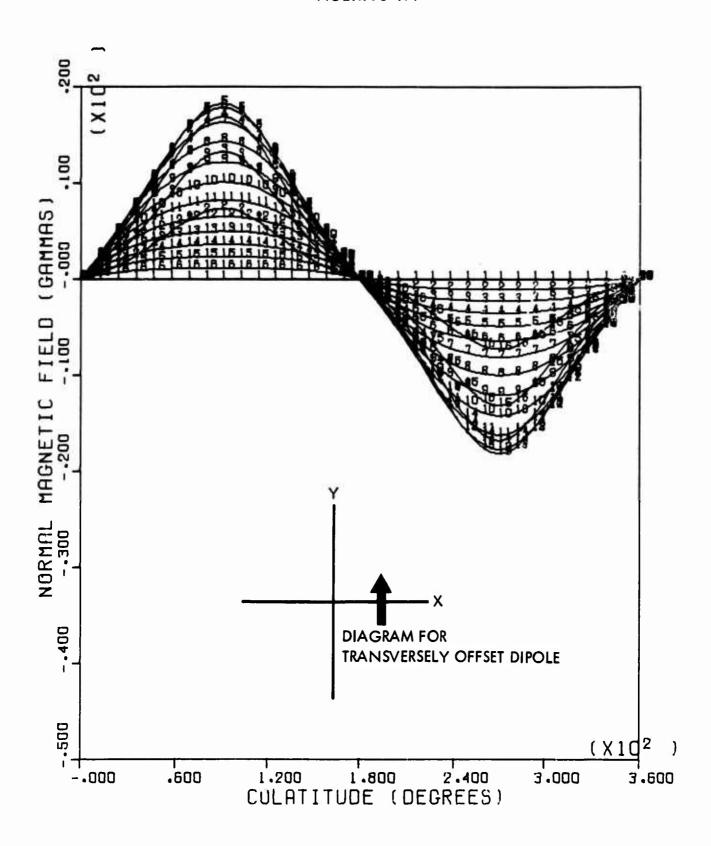


FIG. 37 DATA CURVES FOR TRANSVERSELY OFFSET DIPOLE

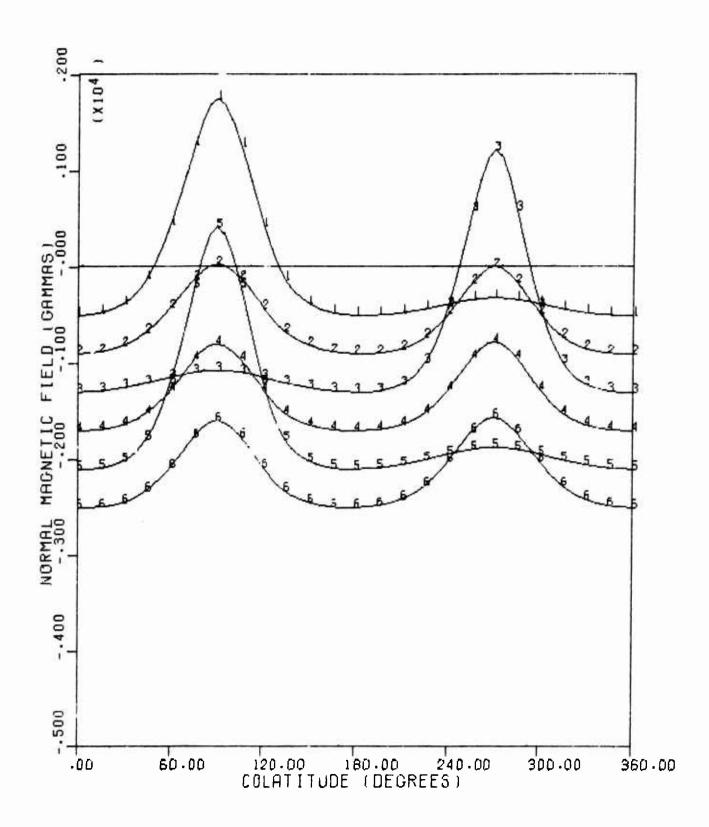


FIG. 38 SAMPLE GRAPH FROM ELECTROSTATIC PLOTTER

APPENDIX A

GLOSSARY OF SYMEOLS AND TERMS

- A(I) is the spherical harmonic coefficient () in the form used by the computer programs. Eqs. (5) and (8) define (2) relationships.
- A(n,m) is the spherical harmonic coefficient A_n^m as an element of a two-dimensional array.
- A_n^m is the spherical harmonic coefficient as defined by Eq. (5).
- B(I) is the spherical harmonic coefficient B_{NN}^{I} in the form used by the computer programs. Eqs. (5) and (8) define the relationships.
- B(n,m) is the spherical harmonic coefficient E_n^m as an element of a two-dimensional array.
- B_n^m is the spherical harmonic coefficient as defined by Eq. (5).
- C is the constant factor in the set of weighting factors $\{Y(I)\}$. C has the value (π/NO) representing the interval of longitude. (see Eqs. (4) and (15)).
- C(I) is the Fourier coefficient representing the amplitude of the Ith term in the expansion of the data curves. Eqs. (32) and (34) define the relationships.
- C_n^m is the coefficient used in Eq. (26b). It originates in the identity

$$\frac{dP_n^m(\cos \theta) = m \cos \theta \ P_n^m(\cos \theta)/\sin \theta - C_n^m \ P_n^{m+1}(\cos \theta)}{d\theta}$$

where

$$C_n^m = [(n-m)(n+m+1)]^{\frac{1}{2}}$$
 for $(m > 0)$
= $[n(n+1)/2]^{\frac{1}{2}}$ for $(m = 0)$

- CS is the parameter in the program SA3024 that represents the data value resulting from a static measurement by the magnetic sensor with a calibration signal turned on.
- CV is the value (in gammas) of the calibration signal. The values of CS, CV, and CZ are used to convert the measured data into gammas, i.e., each data value is multiplied by CV/(CS-CZ).
- CZ is the parameter in the program SA3024 that represents the data value resulting from a static measurement by the magnetic sensor with the calibration signal turned off.
- CO $(= C_0)$ is the Fourier coefficient representing the constant component of the data curves. It is defined in Eq. (30).
- Cl_j is the Fourier coefficient for the jth cosine term in the expansion of the data curves. It is defined in Eq. (31b.).
- C6 is the parameter in the BASIC program SA1024 which corresponds to CV.
- C7 is the parameter in the BASIC program SA1024 which corresponds to CS.
- C3 is the parameter in the BASIC program SA1024 which corresponds to CZ.
- D is the magnitude of the dipole moment \overline{D} . It is equal to $(D_1^2 + D_2^2 + D_3^2)^{\frac{1}{2}}$.
- \overline{D} is the dipole moment vector (D_1, D_2, D_3) defined by Eq. (1).
- D(I) is the I<u>th</u> factor of the set of weighting factors $\{Y(I)\}$. It is a measure of the interval of colatitude assigned to the data points $\{F(I,J), J = 1,2,\dots,N0\}$. (See Eqs. (14) through (18).)
- D_1 , D_2 , D_3 are the x, y, and z-components, respectively, of the dipole moment \overline{D} .
- DEV is the maximum difference between data points of a measured curve and the corresponding points of the curve defined by the approximated Fourier coefficients.

- EA is the parameter in programs SA4024 and SA5024 that represents the angular error (in degrees) to be randomly inserted into the simulated measurement data. It represents the measurement position errors.
- ED is the parameter in programs SA4024 and SA5024 that represents a constant offset (in gammas) of the measurement instrumentation. The analysis procedure handles this value as the magnetic field from a monopole moment.
- EG is the parameter in programs SA4024 and SA5024 that represents the error (in gammas) to be randomly inserted into the simulated measurement data. It represents instrumentation inaccuracies.
- F(I) is the argument representing the x, y, and z-component of the magnetic field vector computed by the subroutine AMPFLD. F(I), for $I=1,2,\cdots,N$ is also the array of data for the subroutine FNCTON.
- F(IJ) is the single-dimensioned array of data values representing the normal component of the magnetic field on the surface of the measurement sphere surrounding the satellite. The relationship is $F(IJ) = f(\theta(I), \varphi(J))$ for $IJ = I + (J 1) \cdot NI$, $I = 1, 2, \cdots, NI$, and $J = 1, 2, \cdots, NO$.
- F(I,J) is the two-dimensional array of numbers representing discrete values of the normal component of the magnetic field on the surface of the measurement sphere surrounding the satellite. The values are actually stored in the single-dimensioned array $F(IJ) = F(I,J) = f(\theta(I), \phi(J))$ for $IJ = I + (J 1) \cdot NI$, $I = 1, 2, \cdots, NI$, and $J = 1, 2, \cdots, NO$.
- $f(\theta,\phi)$ represents the normal component of the total magnetic field on the surface of the measurement sphere of radius Rl surrounding the satellite.
- $f_n(\theta,\phi)$ represents the normal component of the magnetic field on the surface of the measurement sphere from the multipole moment of degree n.
- $f_{nj}(\theta,\phi)$ represents the normal component of the magnetic field on the surface of the measurement sphere from the jth multipole magnet of degree n.
- F9 is the format for reading and printing the spherical coefficients A(I) and B(I), e.g., F9 = (1H ,7E10.4).

- $\overline{H}(\overline{R})$ represents the total magnetic field vector at the point \overline{R} .
- $\overline{H}_n(\overline{R})$ represents the magnetic field vector at the point \overline{R} from a multipole magnet of degree n.
- 1 represents the unit vector along the x-axis.
- IP is the parameter in the program SA4024 that determines whether or not the simulated measurement data is to be interpolated and plotted. IP \neq 0 means that the data will be interpolated and plotted.
- IP1 is the parameter in the programs SA3024 and SA5024 which corresponds to IP.
- IP2 is the parameter in the programs SA3024 and SA5024 that determines whether or not the measurement data is to be printed. IP2 \neq 0 means that the data will be printed.
- IR is the parameter in the programs SA2024 and SA3024 that determines whether or not to read the measurement data from a data file. IR ≠ 0 means that the data will be read from the file DAT024.
- IW is the parameter in programs SA3024 and SA5024 that determines which integrating scheme is to be used. IW = 0 means that the exact, algebraic scheme is to be used.
- $\overline{\mathbf{j}}$ represents the unit vector along the y-axis.
- \overline{k} represents the unit vector along the z-axis.
- m is the order of the coefficients A_n^m and B_n^m , and the polynomials $P_n^m(\cos\,\theta)$ and $P_{n,m}(\cos\,\theta)$.
- M is the program parameter representing the order of the coefficients and polynomials associated with multipole magnets.
- n is the degree of the coefficients A_n^m and B_n^m , and the polynomials $P_n^m(\cos\,\theta)$ and $P_{n,m}(\cos\,\theta)$.

- N is the program parameter representing the degree of the coefficients and polynomials associated with multipole magnets. N is also used to define the number of distinct data points for the subroutine FNCTON.
- NO is the number of curves of data. It is an even integer (<16) corresponding to the number of great circles of data on the measurement sphere.
- N1 is the number of equally spaced data points per curve ranging from 0 through 360 degrees in colatitude. N1 is an odd integer (>33).
- N2 is the parameter in the BASIC program SALO24 which corresponds to IP2. N2 is also used in the subroutine FNCTON to designate the number of Fourier terms that produces the minimum error (DEV) between the data and the computed curve.
- N3 is the number of distinct factors $\{D(I)\}$ of the weights $\{Y(I)\}$. N3 is the largest integer that is less than or equal to (NI + 3)/4, i.e., N3 = $[\max i]$ such that $i \le (NI + 3)/4$.
- $\overline{n}(\theta,\phi)$ is the unit normal vector on (exterior to) the surface of the measurement sphere at the point (R1, θ , ϕ). It has rectilinear components ($\sin \theta$ $\cos \phi$, $\sin \theta \sin \phi$, $\cos \theta$).
- NH is the parameter in the program SA3024 that represents the highest degree spherical harmonic term to be computed from the data (NH = 1 for dipoles, 2 for quadrupoles, etc.). NH is also the parameter in the program SA4024 that represents the total number of different harmonics (degrees) of multipole magnets to be considered.
- NH1 is the parameter in the program SA5024 that represents the total number of different harmonics (degrees) of multipole magnets to be considered.
- NH2 is the parameter in the program SA5024 the represents the highest degree spherical harmonic term to be computed from the data (NH2 = 1 for dipoles, 2 for quadrupoles, etc.)
- NM is the parameter in the programs SA4024 and SA5024 that represents the number of multipole magnets with harmonic number (degree) NN.

- NN is the parameter in the programs SA4024 and SA5024 that represents the harmonic number (degree) for the multipole data being read in (NN = 1 for dipole, 2 for quadrupoles, etc.).
- P represents the multipole position vector in the programs SA4024 and SA5024. It also represents the weighting factors in the subroutine AMPMNT.
- P4 is the parameter in programs SA3024, SA4024, and SA5024 that represents the scale factor in gammas/inch for the y-axis if the data is to be plotted. If PY = 0.0, and if the data is to be plotted, a suitable factor will be computed from the data.
- $P_{n,m}(\cos\theta)$ represents the associated Legendre polynomial of degree n and order m. Reference (b) gives the definition as $P_{n,m}(\cos\theta) \equiv \sin^m\theta$ $d^mP_n(\cos\theta)/d(\cos\theta)^m$ where. $P_n(\cos\theta)$ is the regular Legendre polynomial of degree n. (See also Eq. (2) of Appendix K.)
- $P_n^m(\cos \theta)$ represents the Schmidt polynomial of degree n and order m. They are defined in Eq. (3) of Appendix K.
- PHI(I) is the Fourier coefficients in the subroutine FNCTON which represent the phase angles defined by Eqs. (31) and (33).
- Q₁₁, ···, Q₃₃ represent the coefficients of the quadrupole moment term in rectilinear coordinates.
- \bar{r} represents an element of the orthonormal set of vectors defined by Eq. (23).
- \overline{R} represents the position vector for a point at which the magnetic field is to be computed by the subroutine AMPFLD. Coordinate transformations are included in Figure 1.
- \overline{R}_1 represents the vector between a multipole position and the point at which the magnetic field is to be computed by the subroutine AMPFLD.
- Rl is the parameter in the programs SA1024, ..., SA5024 that represents the radius of the measurement sphere in inches.

- Sl_j is the Fourier coefficient for the jth sine term in the expansion of the data curves. It is defined by Eq. (31a).
- X(I) represents the surface area or weight assigned to the data points $\{F(I,J), J = 1,2,\cdots,N0\}$ when the geometric or approximate integrating scheme is used. It is defined in Eq. (4).
- Y(I) represents the surface area or weight assigned to the data points $\{F(I,J), J = 1, 2, \dots, N0\}$ when either integration scheme is used.
- YDIST is the parameter in the subroutine DATPLT that corresponds to the parameter PY.
- θ represents the spherical coordinate of colatitude defined in terms of rectilinear coordinates as $\theta = \tan^{-1} \left[(x^2 + y^2)^{\frac{1}{2}}/z \right]$.
- θ represents an element of the orthonormal set of vectors defined by Eq. (23).
- $\theta(I)$ represents the $I\underline{th}$ element in the set of values of colatitude at which the data F(I,J) is recorded.
- φ represents the spherical coordinate of longitude defined in terms of rectilinear coordinates as $\varphi = \tan^{-1}(x/y)$.
- $\overline{\phi}$ represents an element of the orthonormal set of vectors defined by Eq. (23).
- $\phi(J)$ represents the jth element in the set of values of longitude at which the data F(I,J) is recorded.

APPENDIX B

LISTING OF SA1024

00010	REM PROGRAM SATDPL	SA100010
	DIM R(3) •W(3) •F(300)	SA100020
00030	LET P1=3.14159265	SA100030
00040	READ NO.N1	SA100040
00050	IF NO<>0 THEN 00070	SA100050
00060	STOP	SA100060
00070	READ R1.C6	SA100070
	LET R1=R1+2.54	SA100080
00090	PRINT "ENTER 1 OR O TO INDICATE DATA PRINT OR NOT"	SA100090
00100	READ N2	SA100100
00110	LET D0=2.*P1/(N1-1)	SA100110
00120	FOR I=1 TO 3 STEP 1	SA100120
00130	LET W(I)=0	SA100130
00140	LET R(I)=0	5A100140
	NEXT I	SA100150
00160	LET N3=N0*N1	SA100160
00170	READ C7.C8	SA100170
00180	FOR I=1 TO N3 STEP 1	SA100180
00190	READ F(I)	SA100190
	NEXT I	SA100200
	PRINT	SA100210
	GOSUB 01160	SA100220
	IF N2=0 THEN 00250	SA100230
	GOSUB 01000	SA100240
	PRINT	SA100250
	FOR KO=1 TO NO STEP 1	SA100260
	LET 03=P1*(K0-1)/N0	SA100270
	LET S3=SIN(03)	SA100280
	LET C3=COS(03)	SA100290
	FOR LO=1 TO N1 STEP 1	SA100300
	LET K1=L0+(K0-1)*N1	SA100310
	LET F1=F(K1)*1.E-5	SA100320
	LET 04=2.*P1*(L0-1)/(N1-1)	SA100330
	LET 54=SIN(04)	SA100340
	LET C4=C05(04)	SA100350
	LET P5=(SIN(D0/4)**2)/(2.*NO)	SA100360
	IF LO=1 THEN 00430	SA100370
	IF LO=N1 THEN 00430	SA100380
	IF LO<>(N1+1)/2 THEN 00420	SA100390
	LET P5=P5*2.	SA100400
	GO TO 00430	SA100410
	LET P5=AB5(SIN(04)*SIN(D0/2))/(2.*N0)	SA100420
	LET R(1)=C3+54	SA100430
	LET R(2)=53*54	SA100440
	LET R(3)=C4	SA100450
	FOR 1=1 TO 3 STEP 1	SA100460
	W(I)=W(I)+(F1*P5)*R(I)	SA100470
	NEXT I	SA100480
00700	TEAT 1	3200 100

```
00490 NEXT LO
                                                                                                SA100490
00500 NEXT KO
                                                                                                SA100500
00510 FOR I=1 TO 3 STEP 1
                                                                                                5A100510
00520 LET W(I)=(1.5*(R1**3))*W(I)
                                                                                                SA100520
00530 NEXT I
                                                                                                SA100530
                                                                                                SA100540
00540 LET R(1)=SQR(W(1)++2+W(2)++2+W(3)++2)
00550 LET 58=W(2)
                                                                                                SA100550
00560 LET S9=W(1)
                                                                                                SA100560
00570 GOSUB 01670
                                                                                                SA100570
00580 LET R(2)=C5*180./P1
                                                                                                SA100580
00590 LET S8=SQR(W(1)##2+W(2)##2)
                                                                                                SA100590
00600 LET S9=W(3)
                                                                                                SA100600
00610 GOSUB 01670
                                                                                                SA100610
00620 LET R(3)=C5*180./P1
                                                                                                SA100620
00630 PRINT "(DX+DY+DZ) = ";W(1);W(2);W(3)
00640 PRINT "(D+02+01) = ";R(1);R(2);R(3)
                                                                                                SA100630
                                                                                                SA100640
00650 GOSUB 01320
                                                                                                SA100650
00660 GO TO 00040
                                                                                                SA100660
00670
                                                                                                SA100670
00680 REM DATA NO.N1
                                                                                                SA100680
00690 DATA 6.25
                                                                                                5A100690
00700 REM DATA R1.C6
                                                                                                SA100700
00710 DATA 96.0.1.0
                                                                                                SA100710
00720 REM DATA N2
                                                                                                SA100720
00730 DATA 1
                                                                                                SA100730
00740 REM DATA C7, C8, (F(I), I=1,N3)
                                                                                                SA100740
                                                                                                SA100750
00750 DATA 1.0. 0.0.
                          -475.5.
00760 DATA -504.3,
                                      -381.5, -123.3, 438.4, 1273.7, 1749.2, SA100760
00770 DATA 1259.6.
                          431.3, -125.7,
                                                  -382.1, -476.3, -502.7, -499.8, SA100770
00780 DATA -476.5, -436.5, -386.3,
                                                  -341.0. -322.6.
                                                                         -339.4, -386.5, SA100780
00790 DATA -435.9, -476.7, -499.0, 00800 DATA -675.4, -420.8, -118.9, 00810 DATA -815.5, -880.6, -904.1,
                                                  -503.7, -902.8, -881.2,
27.2, -119.7, -426.7,
                                                                                      -814.6.5A100790
                                                                                     -672.7.5A100800
                                                  -897.6, -851.0, -728.7, -483.8,SA100810
                            7.2, -160.4, -480.6, -728.9, -850.4, -897.1, SA100820
00820 DATA -164.5.
00830 DATA -903.7, -1302.5, -1287.7, -1254.4, -1206.6, -1148.0, -1096.8, SA100830
00840 DATA-1077.9, -1097.1, -1148.4, -1206.6, -1255.4, -1288.3, -1303.0, SA100840 00850 DATA-1292.6, -1219.0, -990.5, -394.6, 589.2, 1219.4, 595.2, SA100850 00860 DATA -406.4, -993.0, -1219.6, -1291.0, -1304.2, -1703.5, -1691.6, SA100860 00870 DATA-1642.3, -1519.4, -1281.9, -961.8, -800.9, -966.5, -1277.0, SA100870
00880 DATA-1520.1, -1642.5, -1692.0, -1704.1, -1690.6, -1640.8, -1515.1, SA100880
00890 DATA-1274.8, -946.5, -779.8, -946.2, -1274.5, -1518.1, -1641.6, SA100890 no900 DATA-1691.1, -1703.7, -2102.4, -2092.4, -2019.9, -1788.4, -1202.2, SA100900 no910 DATA -211.0, 418.3, -207.2, -1209.2, -1792.5, -2019.2, -2091.1, SA100910 no920 DATA-2103.6, -2088.4, -2056.8, -2005.6, -1947.4, -1898.5, -1877.5, SA100920
00930 DATA-1897.9, -1947.7, -2006.3, -2054.5, -2088.6, -2103.4, -2502.4, SA100930
00940 DATA-2497.0, -2452.0, -2327.8, -2086.3, -1770.2, -1598.7, -1762.8, SA100940
00950 DATA-2082.9, -2329.9, -2448.4, -2497.0, -2503.6, -2481.7, -2415.6, SA100950 00960 DATA-2274.3, -2022.5, -1713.6, -1566.7, -1720.3, -2020.7, -2271.2, SA100960
00970 DATA-2414.6, -2481.5, -2503.5
                                                                                                SA100970
                                                                                                SA100980
00980 DATA 0. 0.
00990
                                                                                                SA100990
01000 REM SUBROUTINE PRINTF
                                                                                                SA101000
01010 FOR KO= 1 TO NO STEP 1
                                                                                                SA101010
01020 LET K2=1+(K0-1)*(N1)
                                                                                                SA101020
01030 LET K3=N1+(K0-1)*(N1)
                                                                                                SA101030
01040 PRINT
                                                                                                5A101040
01050 PRINT "CURVE NO."; KO
                                                                                                SA101050
01060 FOR K4= K2 TO K3 STEP 1
                                                                                                SA101060
01070 IF F(K4)<1E-2 THEN 01090
                                                                                                SA101070
01080 GO TO 01110
                                                                                                5A10108C
```

```
01090 IF F(K4) <- 1E-2 THEN 01110 01100 LET F(K4) = 0.0
                                                                                        SA101090
SA101100
01110 PRINT F(K4).
                                                                                        SA101110
01120 NEXT K4
                                                                                        SA101120
01130 NEXT KO
                                                                                        SA101130
01140 RETURN
                                                                                        SA101140
01150
                                                                                        SA101150
01160 REM SUBROUTINE SHIFT
                                                                                        SA101160
01170 LET Z1=(F(1)+F(N1))/2.
                                                                                        SA101170
01180 LET N3=(N1+1)/2
                                                                                        SA101180
01190 LET Z2=F(N3)
                                                                                        SA101190
01200 FOR KO= 2 TO NO STEP 1
                                                                                        SA101200
01210 LET K2=1+(K0-1)*N1
                                                                                        SA101210
01220 LET K3=K0#N1
                                                                                        SA101220
01230 LET K4=N3+(K0-1)*N1
                                                                                        SA101230
01240 LET C1=(2.*Z1+Z2-F(K2)-F(K4)-F(K3))/3.
                                                                                        SA101240
01250 FOR LO=1 TO N1 STEP 1
                                                                                        SA101250
01260 LET K4=L0+(K0-1)*N1
                                                                                        SA101260
01270 LET F(K4)=(F(K4)+C1)+C6/(C7-C8)
                                                                                        SA101270
01280 NEXT LO
                                                                                        SA101280
01290 NEXT KO
                                                                                        SA101290
01300 RETURN
                                                                                        SA101300
01310
                                                                                        SA101310
01320 REM SUBROUTINE PRINT1
                                                                                        SA101320
01330 DIM S(3)
                                                                                        SA101330
01340 LET P1=3.14159265
                                                                                        SA101340
01350 FOR I=1 TO 3 STEP 1
                                                                                        SA101350
01360 LET 5(1) =- W(1)
                                                                                        SA101360
01370 NEXT I
                                                                                        SA101370
01380 LET R(1)=SQR(S(1)**2+S(2)**2+S(3)**2)
                                                                                        SA101380
01390 LET S8=S(2)
                                                                                        SA101390
01400 LET 59=5(1)
                                                                                        SA101400
01410 GOSUB 01670
                                                                                        SA101410
01420 LET R(2)=C5*180./P1
                                                                                        SA101420
01430 LET S8=SQR(S(1)**2+S(2)**2)
01440 LET S9=S(3)
                                                                                        SA101430
                                                                                        SA101440
01450 GOSUB 01670
                                                                                        SA101450
01460 LET R(3)=C5*180./P1
                                                                                        SA101460
                                                                                        SA101470
01470 LET W3=ABS(W(3))
01480 LET W4=.2#W3
                                                                                        SA101480
01490 LET A1=SQR(S(1)**2+S(2)**2)
01500 LET A2=.2*A1
01510 PRINT THE COMPENSATING
                                                                                        5A101490
                                                                                        SA101500
                   THE COMPENSATING MAGNET FOR THE XY-PLANE SHOULD";
                                                                                        SA101510
O1530 PRINT "CENTIMETER-CUBED WITH THE NORTH POLE POINTING"R(2);
O1540 PRINT "DEGREES FROM +X."
O1550 PRINT "(THE MAGNET SHOULD READ "A2" GAMMA AT ONE METER.)"
O1560 PRINT " THE COMPENSATING MAGNET FOR THE
                                                                                        SA101520
                                                                                        SA101530
                                                                                        SA101540
                                                                                        SA101550
                  THE COMPENSATING MACNET FOR THE Z-AXIS SHOULD BE";
                                                                                        SA101560
01570 PRINT W3" GAUSS-"
                                                                                        SA101570
01580 IF S(3)=>0. THEN 01620
                                                                                        SA101580
01590 PRINT "CENIMETER-CUBED WITH THE NORTH POLE POINTING";
                                                                                        SA101590
01600 PRINT "TOWARDS -Z (THE MAGNET "
                                                                                        SA101600
01610 GO TO 01640
                                                                                        SA101610
01620 PRINT "CENTIMETER-CUBED WITH THE NORTH POLE POINTING";
01630 PRINT "TOWARDS +Z (THE MAGNET)"
01640 PRINT "SHOULD READ"W4" GAMMA AT ONE METER."
                                                                                       SA101620
                                                                                       SA101630
                                                                                       SA101640
01650 RETURN
                                                                                       SA101650
                                                                                       SA101660
01670 REM SUBROUTINE ARCTAN
                                                                                       SA101670
01680 IF S9=0 THEN 01750
                                                                                        SA101680
```

01690 LET C5=S8/S9	SA101690
01700 IF S970 THEN 01730	SA101700
01710 LET C5=ATN(C5)+P1	SA101710
01720 GO TO 01790	SA101720
01730 LET C5=ATN(C5)	SA101730
01740 GO TO 01790	SA101740
01750 IF 5840 THEN 01780	SA101750
01760 LET C5=P1/2	SA101760
01770 GO TO 01790	SA101770
01780 LET C5=3*P1/2	SA101780
01790 RETURN	SF101790
01800 END	SA101800

APPENDIX C

LISTING OF SA 2024

```
PROGRAM SATDPL(INPUT,OUTPUT,DAT024,TAPE7=DAT024)
                                                                        SA200010
   DIMENSION R(3) . W(3) . F(800)
                                                                        SA200020
   P1=3.14159265358979
                                                                        SA200030
                                                                        SA200040
   REWIND 7
                                                                        SA200050
10 READ O1 , NO , N1 , IR
   IF(NO.EQ.O) STOP
                                                                        SA200060
                                                                        SA200070
  READ 03. R1.C6
                                                                        SA200080
   R1=R1+2.54
   PRINT 02
                                                                        SA200090
                                                                        SA200100
   READ 01. N2
  D0=2. #P1/FLOAT(N1-1)
                                                                        SA200110
  DO 20 I=1.3
                                                                        SA200120
                                                                        SA200130
  W(I)=0
                                                                        SA200140
  R(I)=0
20 CONTINUE
                                                                        SA200150
                                                                        SA200160
  N3=N0#N1
   IF(IR.EQ.0) READ 03, C7.C8.(F(I).I=1.N3)
                                                                        SA200170
   IF(IR.EQ.0) WRITE(7.03) C7.C8.(F(I).I=1.N3)
                                                                        SA200180
   IF(IR.NE.O) READ(7.03) C7.C8.(F(I).I=1.N3)
                                                                        SA200190
  CALL SHIFT(F,NO,N1,C6,C7,C8)
                                                                        SA200200
   IF(N2.NE.O) CALL PRINTF(F.NO.N!)
                                                                        SA200210
                                                                        SA200220
   DO 60 KO=1,NO
  O3=P1*(FLOAT(KO-1)/FLOAT(NO))
                                                                        SA200230
   53=SIN(03)
                                                                        SA200240
                                                                        SA200250
   C3=C05(03)
                                                                        SA200260
  DO 60 LO=1.N1
                                                                        SA200270
   KL=L0+(K0-1)*N1
                                                                        SA200280
   F1=F(KL)+1.E-5
   04=2. *P1*(FLOAT(LO-1)/FLOAT(N1-1))
                                                                        SA200290
                                                                        SA200300
   S4=SIN(04)
                                                                        SA200310
   C4=COS(04)
  P5=(SIN(D0/4) ++2)/(2. +FLOAT(N0))
                                                                        SA200320
   IF(LO.EQ.1.OR.LO.EQ.N1) GO TO 40
                                                                        SA200330
                                                                        SA200340
   IF(LO.NE.(N1+1)/2) GO TO 30
   P5=P5#2.
                                                                        5A200350
                                                                        SA200360
   GO TO 40
                                                                        SA2C0110
30 P5=ABS(SIN(04)#SIN(D0/2))/(2.#FLOAT(N0))
40 R(1)=C3#54
                                                                        SA200380
                                                                        5A200390
   R(2)=53*54
                                                                        SA200400
   R(3)=C4
  DO 50 I=1.3
                                                                        SA200410
50 W(I)=W(I)+(F1*P5)*R(I)
                                                                        SA200420
                                                                        SA200430
60 CONTINUE
  DO 70 I=1.3
                                                                        SA200440
  W(I) = (1.5*(R1**3))*W(I)
                                                                        SA200450
                                                                        SA200460
70 CONTINUE
  CALL SPCOOR (W.R)
                                                                        5A200470
  PRINT 04, W(1), W(2), W(3)
                                                                        SA200480
```

```
PRINT 05. R1. 1.R( 1.R(3)
                                                                        SA200490
   CALL PRINT: %1
                                                                        SA200500
   GO TO 10
                                                                        SA200510
01 FORMAT(1415)
                                                                        SA200520
02 FORMAT (44H0ENTER 1 OR 0 TO INDICATE DATA PRINT OR NOT9)
                                                                        SA200530
03 FORMAT (9F6.1)
                                                                        SA200540
04 FORMAT(14H (DX,DY,DZ) = ,3F10.2)
                                                                        SA200550
05 FORMAT(14H (D +02+01) = +3F10+2)
                                                                        SA200560
                                                                        SA200570
                                                                        SA200580
   SUBROUTINE PRINTF(F.NO.N1)
                                                                        SA200590
  DIMENSION F(800)
                                                                        SA200600
   DO 30 KO=1.NO
                                                                        SA200610
   KS=1+(KO-1)+(N1)
                                                                        SA200620
   KE=N1+(K0-1)*(N1)
                                                                        SA200630
PRINT 11.KO
30 PRINT 12.(F(KK).KK=KS.KE)
                                                                        SA200640
                                                                        SA200650
   RETURN
                                                                        SA200660
11 FORMAT(11HOCURVE NO. , 12)
                                                                        SA200670
12 FORMAT(1H .8F8.1)
                                                                        SA200680
                                                                        SA200690
                                                                        SA200700
   SUBROUTINE SHIFT(F.NO.N1.CV.CS.CZ)
                                                                        SA200710
  DIMENSION F(800)
                                                                        SA200720
   P1=(F(1)+F(N1))/2.
                                                                        SA200730
   N3=(N1+1)/2
                                                                        SA200740
   P2=F(N3)
                                                                        SA200750
   DO 30 KO=1.NO
                                                                        SA200760
   K5=1+(K0-1)#N1
                                                                        SA200770
   KE=KO*N1
                                                                        SA200780
   KK=N3+(KO-1)*N1
                                                                        SA200790
   COR=(2. +P1+P2-F(KS)-F(KK)-F(KE))/3.
                                                                        SA200800
   DO 30 LO=1.N1
                                                                        SA200810
   KK=L0+(K0-1)*N1
                                                                        SA200820
30 F(KK) = (F(KK) + COR) + CV/(CS - CZ)
                                                                        SA200830
   RETURN
                                                                        SA200840
   END
                                                                        SA200850
                                                                        SA200860
   SUBROUTINE SPCOOR (D.R.)
                                                                        SA200870
   DIMENSION D(3)+R(3)
                                                                        SA200880
   DATA PI/3.14159265358979/
                                                                        SA200890
   R(1)=SQRT(DOT(D.D))
                                                                        SA200900
  R(2)=0.
                                                                        SA200910
  R(3)=0.
                                                                        SA200920
   IF(R(1).EQ.O.) RETURN
                                                                        SA200930
   IF(D(1) **2+D(2) **2.NE.O.) R(2) =ATAN2(D(2).D(1))*180./PI
                                                                        SA200940
   R(3)=ATAN2(SQRT(D(1)##2+D(2)##2)+D(3))#180+/PI
                                                                        SA200950
  RETURN
                                                                        SA200960
  END
                                                                        SA200970
                                                                        SA200980
  FUNCTION DOT(X.Y)
                                                                        SA200990
  DIMENSION X(3) .Y(3)
                                                                        SA201000
  DOT=X(1) *Y(1) +X(2) *Y(2) +X(3) *Y(3)
                                                                        SA201010
  RETURN
                                                                        SA201020
  END
                                                                        SA201030
                                                                        SA201040
  SUBROUTINE PRINTI(W)
                                                                        5A201050
                                                                        SA201060
  DIMENSION R(3) +S(3) +W(3)
  DATA ST.GT/1H-,1H+/
                                                                        SA201070
  P1=3.14159265
                                                                        SA201080
```

DO 10 I=1,3 10 S(I)=-W(I) CALL SPCOOR(S,R) W3=ABS(W(3)) W32=.2*W3 AM1=SQRT(S(I)**2+5(2)**2) AM12=.2*AM1 SA201150 SA201140 SA201150
CALL SPCOOR(S+R) W3=ABS(W(3)) W32=.2*W3 AM1=SQRT(S(1)**2+S(2)**2) AM12=.2*AM1 SA201140 SA201150
W3=ABS(W(3)) W32=.2*W3 AM1=SQRT(S(1)**2+S(2)**2) AM12=.2*AM1 SA201140 SA201150
W32=,2*W3 SA201130 AM1=SQRT(S(1)**2+S(2)**2) SA201140 AM12=,2*AM1 SA201150
AM1=SQRT(S(1)++2+S(2)++2) SA201140 AM12=,2+AM1 SA201150
AM12=.2*AM1 SA201150
Militar & Publis
PRINT 11, AM1 SA201160
PRINT 12, R(2) SA201170
PRINT 13, AM12 SA201180
PRINT 14. W3 SA201190
FIGURE AND WA
. 1015/02/07/07/07
IF(S(3).GE.O.) PRINT 15, GT SA201210
PRINT 16, W32 SA201220
11 FORMAT(54H THE COMPENSATING MAGNET FOR THE XY-PLANE SHOULD B SA201230
+,2HE ,F7.1,7H GAUSS-) SA201240
12 FORMAT(47H CENTIMETER-CUBED WITH THE NORTH POLE POINTING .F6.1. SA201250
+17H DEGREES FROM +X•) SA201260
13 FORMAT(25H (THE MAGNET SHOULD READ ,F7.1,21H GAMMA AT ONE METER.))SA201270
14 FORMAT (43H THE COMPENSATING MAGNET FOR THE Z-AXIS, SA201280
+11H SHOULD BE •F7•1•7H GAUSS-) SA201290
15 FORMAT(46H CENTIMETER-CUBED WITH THE NORTH POLE POINTING. SA201300
+9H TOWARDS ,A1,14HZ. (THE MAGNET) SA201310
THE THE THE THE THE
16 FORMAT(13H SHOULD READ ,F7.1,22H GAMMA AT ONE METER.)) SA201320
RETURN SA201330
END 5A201340

APPENDIX D SAMPLE PROBLEM FOR SA2024

```
NØL INTERCOM
TYPE "LØGIN."
LØGIN(S)
024533LACK/
            09.46.40. BD/42/34
 09/07/73
C- SETUP.FØRTRAN
ON AT
          09.46.56. 09/07/73
**FØRTRAN
**NEW OR OLD FILE- ATTACH(BN2024,BN2024)*ATTACH(DATO24,DATO24)*TAPE(ON)
09.47.39.ATTACH(BN2024,BN2024)
09.47.50.ATTACH(DATO24,DATO24)
**READY.
BN2024.
        25
    6
 96.00 1.000
    0
    6
        25
 96.00 1.000
    10
           0 -5043 -4755 -3815 -1233 4384 12737 17492
 12596
        4313 -1257 -3821 -4763 -5027 -4998 -4765 -4365
 -3863 -3410 -3226 -3394 -3865 -4359 -4767 -4990 -5037
 -9028 -8812 -8146 -6754 -4208 -1189
                                       272 -1197 -4267
 -6727 -8155 -8806 -9041 -8976 -8510 -7287 -4838 -1645
    72 -1604 -4806 -7289 -8504 -8971 -9037-13025-12877
-12544-12066-11480-10968-10779-10971-11484-12066-12554
-12883-13030-12926-12190 -9905 -3946 5892 12194 5952
 -4064 -9930-12196-12910-13042-17035-16916-16423-15194 Data Tape
-12819 -9618 -8009 -9665-12770-15201-16425-16920-17041
-16906-16408-15151-12748 -9465 -7798 -9462-12745-15181
-16416-16911-17037-21024-20924-20199-17884-12022 -2110
  4183 -2072-12092-17925-20192-20911-21036-20884-20568
- 20056-19474-18985-18775-18979-19477-20063-20545-20886
-21034-25024-24970-24520-23278-20863-17702-15987-17628
-20829-23299-24484-24970-25036-24817-24156-22743-20225
-17136-15667-17203-20207-22712-24146-24815-25035
    0
TAPE(ØFF)
```

```
ENTER 1 OR O TO INDICATE DATA PRINT OR NOT:
(DX,DY,DZ) =
                825.54
                         -211.43
                                    20.71
(D,02,01) =
                852.44
                         -14.37
                                    88.61
    THE COMPENSATING MAGNET FOR THE XY-PLANE SHOULD BE
CENTIMETER-CUBED WITH THE NORTH POLE POINTING 165.6 DEGREES FROM +X.
(THE MAGNET SHOULD READ
                        170.4 GAMMA AT ONE METER.)
    THE COMPENSATING MAGNET FOR THE Z-AXIS SHOULD BE
CENTIMETER-CUBED WITH THE NORTH POLE POINTING TOWARDS -Z. (THE MAGNET
               4.1 GAMMA AT ONE METER.)
SHØULD READ
ENTER 1 OR O TO INDICATE DATA PRINT OR NOT:
CURVE NO. 1
  -504.3 -475.5 -381.5 -123.3 438.4 1273.7 1749.2 1259.6
   431.3 -125.7 -382.1 -476.3 -502.7 -499.8 -476.5 -436.5
  -386.3 -341.0 -322.6 -339.4 -386.5 -435.9 -476.7 -499.0
  -503.7
CURVE NO. 2
  -502.8 -481.2 -414.6 -275.4 -20.8 281.1
   -83.8 235.5
```

852.2 GAUSS-

20.7 GAUSS-

427.2 280.3 -26.7 -272.7 -415.5 -480.6 -504.1 -497.6 -451.0 -328.7 407.2 239.6 -80.6 -328.9 -450.4 -497.1 -503.7 CURVE NO. 3 -502.8 -488.0 -454.7 -406.9 -348.3 -297.1 -278.2 -297.4 -348.7 -406.9 -455.7 -488.6 -503.3 -492.9 -419.3 -190.8 405.1 1388.9 2019.1 1394.9 393.3 -193.3 -419.9 -491.3 -504.5 CURVE NO. 4 -503.3 -491.4 -442.1 -319.2 -61.7 238.4 399.3 233.7 -76.8 -319.9 -442.3 -491.8 -503.9 -490.4 -440.6 -314.9 253.7 420.4 254.0 -74.3 -317.9 -441.4 -490.9 -74.6 -503.5 CURVE NO. 5 -502.8 -492.8 -420.3 -188.8 397.4 1388.6 2017.9 1392.4 390.4 -192.9 -419.6 -491.5 -504.0 -488.8 -457.2 -406.0 -347.8 -298.9 -277.9 -298.3 -348.1 -406.7 -454.9 -489.0 -503.8 CURVE NO. 6 -502.8 -497.4 -452.4 -328.2 -86.7 229.4 400.9 236.8 -83.3 -330.3 -448.8 -497.4 -504.0 -482.1 -416.0 -274.7 -22.9 286.0 432.9 279.3 -21.1 -271.6 -415.0 -481.9 -503.9 (DX,DY,DZ) =825.54 -211.43 20.71

-14.37 (D,02,01) =852.44 88.61 THE COMPENSATING MAGNET FOR THE XY-PLANE SHOULD BE 852.2 GAUSS-CENTIMETER-CUBED WITH THE NORTH POLE POINTING 165.6 DEGREES FROM +X. (THE MAGNET SHOULD READ 170.4 GAMMA AT ONE METER.)

THE COMPENSATING MAGNET FOR THE Z-AXIS SHOULD BE 20.7 GAUSS-CENTIMETER-CUBED WITH THE NORTH POLE POINTING TOWARDS -Z. (THE MAGNET SHOULD READ 4.1 GAMMA AT ONE METER.)
09.53.46.STOP
++READY.
LOGOUT.

CP TIME 1.187
PP TIME 48.498
CØNNECT TIME 0 HR 9 MIN 10 SEC
TØTAL CØST ØF SESSIØN = \$ 2.28
09/07/73 LØGGED ØUT AT 09.55.50.<

Notes:

- 1. The file BN2024 is the binary version of SA2024. It consists of six binary records (subprograms).
- 2. The information typed in by the user has been underlined.

APPENDIX E

LISTING OF SA3024

	PROGRAM DIPANL(INPUT=65.OUTPUT=65.DAT024=55.TAPE5=INPUT, + TAPE6=OUTPUT.TAPE7=DAT024,TAPE99)	SA300018 SA300020 SA300030
c	SATELLITE ANALYSIS PROGRAM	SA300040 SA300050 SA300060
С С	THIS PROGRAM ANALYZES MAGNETIC DATA REPRESENTING THE NORMAL COMPONENT OF THE MAGNETIC FIELD FROM A SATELLITE. THE DATA IS ENTERED IN THE FOLLOWING ORDER	SA300070 -SA300080 SA300090 SA300100
c	NO - THE NUMBER OF GREAT CIRCLES OF DATA. (NO IS USUALLY EVEN. E.G., NO=(N1-1)/2. THE PROGRAM STOPS IF NO=0.)	SA300110 SA300120 SA300130 SA300140
С С	N1 - THE NUMBER OF DATA POINTS PER GREAT CIRCLE. (N1 IS ALWAYS ODD. THE FIRST DATA POINT IS THE SAME AS THE LAST FOR EACH GREAT CIR-LE.)	SA300150 SA300160 SA300170
c c c	NH - THE HAPMONIC NUMBER (DEGREE) REPRESENTING THE HIGHEST DEGREE SPHERICAL HARMONIC TERM TO BE COMPUTED FROM THE DATA. (NH=1 FOR DIPOLES, 2 FOR QUADRUPOLES, ETC.)	SA300210
С С	IR - DETERMINES WHETHER OR NOT TO READ THE DATA FROM THE FILE DATO24. (IR=0 MEANS THAT THE DATA WILL NOT BE READ FROM THE FILE.)	SA300220 SA300230 SA300240 SA300250 SA300260
c	<pre>IP1 - DETERMINES WHETHER OR NOT THE MAGNETIC DATA IS TO BE PLOTTED. (IP1=0 MEANS THAT THE DATA WILL NOT BE PLOTTED.)</pre>	SA300280 SA300280 SA300290
c	IW - DETERMINES THE TYPE OF INTEGRATING SCHEME TO BE USED. (IW=0 MEANS THAT THE EXACT. ALGEBRAIC SCHEME IS TO BE USED.)	SA300300 SA300310 SA300320
C	R1 - THE RADIUS OF THE MEASUREMENT SPHERE IN INCHES.	SA300330 SA300340
c	CV - THE VALUE OF THE CAL SIGNAL (CS-CZ) IN GAMMAS. PY - THE SCALE FACTOR (GAMMAS/INCH) FOR THE Y-AXIS IF THE DATA IS TO	SA300350 SA300360
C	BE PLOTTED. (IF PY=0.0 A FACTOR WILL BE COMPUTED FROM THE DATA.)	
c	IP2 - DETERMINES WHETHER OR NOT THE MAGNETIC DATA IS TO BE PRINTED. (IP=0 MEANS THAT THE DATA WILL NOT BE PRINTED.)	SA300400 SA300410 SA300420
C	CS - THE STATIC MEASUREMENT WITH THE CAL SIGNAL.	SA300420 SA300430 SA300440
c	CZ - THE STATIC MEASUREMENT WITHOUT THE CAL SIGNAL.	SA300450 SA300460
C	F(I) - THE DATA REPRESENTING THE NORMAL COMPONENT OF THE MAGNETIC FIELD ALONG GREAT CIRCLES ON THE MEASUREMENT SPHERE.	SA300470 SA300480

```
SA300490
                                                                         SA300500
                                                           ************SA300510
   DIMENSION F(1000) . PV(200) . A(11) . B(10) . R(3) . D(3)
                                                                         SA300520
   NAMELIST/NAM/NO.N1.NH.IR.IP1.IW.R1.CV.PY
                                                                         SA300530
   DATA P1/3.14159265358979/
                                                                         SA300540
   PEWIND 7
                                                                         SA300550
   IPT=0
                                                                         SA300560
10 READ(5.01) NO.N1.NH.IR.IP1.IW
                                                                         SA300570
   IF(IPT.EQ.O.AND.IP1.NE.O) CALL CALCM1(0.10H024 LACKEY.-10.)
                                                                         SA300580
   IF(NO.EQ.0) GO TO 90
                                                                         SA300 590
   IF(IP1.NE.O) IPT=1
                                                                         SA300600
   READ(5.02) R1.CV.PY
                                                                         SA300610
   WRITE(6.NAM)
                                                                         SA300620
   WR TE(6.03)
                                                                         SA300630
   READ(5.01) 1P2
                                                                         SA300640
   N3=N0=N1
                                                                         SA300650
   1F(IR.EQ.0) READ(5.04) CS.CZ.(F(I).I=1.N3)
                                                                         SA300660
   IF(IR.EQ.0) WRITE(7.04) CS.CZ.(F(I).I=1.N3)
                                                                         SA300670
   IF(IR.NE.O) READ(7.04) CS.CZ.(F(I).I=1.N3)
                                                                         SA300680
   CALL SHIFT(F,NO,N1,CV,CS,CZ)
                                                                         SA300690
   IF(IW.EQ.O) CALL WGT1(NO.N1.PV)
                                                                         SA300700
   IF(IW.NE.O) CALL WGT3(NO.N1.PV)
                                                                         SA300710
   CALL AMPMNT(NO.NI.O.RI.F.PV.A.B)
                                                                         SA300720
   A0=A(1)+1.E-5
                                                                         SA300730
   FO=A0/((R1+2.54)++2)
                                                                         SA300740
                                                                         SA300750
   DO 20 I=1.N3
                                                                         SA300760
20 F([)=F([)+1.E-5-F0
   WRITE(6.05) AO
                                                                         SA300770
   IF(IP2.NE.O) CALL PRINTF(F.NO.N1)
                                                                         SA300780
   IF(IP1.NE.O) CALL DATPLT(NO.N1.F.PY)
                                                                         SA300790
   DO 80 NI=1.NH
                                                                         SA300800
   CALL AMPMNT(NO.NI.NI.RI.F.PV.A.B)
                                                                         SA300810
   IF(NI.GT.1) GO TO 60
                                                                         SA300820
                                                                         SA300830
   D(1)=A(1)
                                                                         SA300840
   D(2)=B(1)
                                                                         SA300850
   D(3)=A(1)
   CALL SPCOOR(D.R)
                                                                         SA300860
   WRITE(6,06) D
                                                                         SA300870
                                                                         SA300880
   WRITE(6,07) R
   CALL PRINTI(D)
                                                                         SA300890
   GO TO 70
                                                                         SA300900
60 IF(NI.GT.2) GO TO 70
                                                                         SA300910
   53=5QRT(3.)
                                                                         SA300920
                                                                         SA300930
   Q11=S3*A(3)-A(1)
   Q22=-S3#A(3)-A(1)
                                                                         SA300940
   Q33=-Q11-Q22
                                                                         SA300950
   Q12=53+B(2)
                                                                         SA300960
   Q13=S3*A(2)
                                                                         SA300970
   Q23=S3*B(1)
                                                                         SA300980
   WRITE(6,09) Q11,Q22,Q33,Q12,Q13,Q23
                                                                         SA300990
70 WRITE(6,11) NI
                                                                         5A301000
   NI1=NI+1
                                                                         SA301010
   WRITE(6.12) (A(I).I=1.NI1)
                                                                        SA301020
   WRITE(6+12) (8(1)+1=1+N1)
                                                                        SA301030
80 CONTINUE
                                                                         SA301040
   GO TO 10
                                                                        SA301050
90 IF(IPT.NE.0) CALL CALCM1(0.10H024 LACKEY.+10.)
                                                                        SA301060
   STOP
                                                                        SA301070
01 FORMAT(1415)
                                                                        SA301080
```

```
02 FORMAT(9F8.4)
                                                                          SA301090
03 FORMAT(44HOENTER 1 OR 0 TO INDICATE DATA PRINT OR NOT9)
                                                                          SA301100
04 FORMAT(9F6.1)
                                                                          SA301110
                                                                          SA301120
06 \text{ FORMAT}(14H (DX,DY,DZ) = .3F10.2)
05 FORMATI26HOTHE MONOPOLE MOMENT IS -- . F20.6//1
                                                                          SA301130
                                                                          SA301140
07 FORMAT(14H (D +02+01) = +3F10+2)
09 FORMAT(54HOTHE QUADRUPOLE MOMENTS Q11,Q22,Q33,Q12,Q13,Q23 ARE --/ SA301150
  + (3E20.12))
                                                                          SA301160
11 FORMAT(27HOTHE A ( B COEFFS. FOR THE .12.16HTH HARMONIC ARE9)
                                                                          5A301170
12 FORMAT(1H .5E20.12)
                                                                          SA301180
                                                                          SA301190
                                                                          SA301200
   SUBROUTINE AMPMNT(NO.N1.N.R1.F.P.A.B)
                                                                          5A301210
                                                                          SA301220
   DIMENSION F(1000) .P(200) .PN(10.200) .A(11) .B(10)
   DATA PI/3.14159265358979323846/
                                                                          SA301230
   CALL POLVAL(N1.N.PN)
                                                                          SA301240
                                                                          SA301250
   KI = 0
                                                                          SA301260
   N2 = (N1+1)/2
                                                                          SA301270
   D1=PI/FLOAT(NO)
   D2=2. *PI/FLOAT(N1-1)
                                                                          SA301280
                                                                          SA301290
   DO 10 K=1+NO
                                                                          SA301300
   Al=D1+FLOAT(K-1)
                                                                          SA301310
   LP=+1
                                                                          SA301320
   LI=0
                                                                          SA301330
   DO 10 L=1.N1
                                                                          SA301340
   KL = KL+1
                                                                          SA301350
   IF(L.GT.N2) LP=-1
   LI=LI+LP
                                                                          SA301360
                                                                          SA301370
   A2=A1+FLOAT(1-LP)*PI/2.
                                                                          SA301380
   F1=F(KL)
                                                                          SA301390
   A2N=FLOAT(2*N+1)
                                                                          SA301400
   A1N=FLOAT(N+1)
                                                                          SA301410
   AR=(R1+2.54)++(N+2)
                                                                          SA301420
   NN=N+1
                                                                          SA301430
   DO 10 MM=1.NN
                                                                          SA301440
   M=MM-1
                                                                          SA301450
   AM=FLOAT(M)
                                                                          SA301460
   IF(KL.EQ.1) A(MM)=0.
                                                                          SA301470
   IF(KL.EQ.1.AND.M.GT.O) B(M)=0.
                                                                          SA301480
   PNM1=PN(MM,LI) *COS(AM*A2)
   PNM2=PN(MM.LI) +SIN(AM+A2)
                                                                          SA301490
                                                                          SA301500
   AC=(A2N#AR/A1N)#F1#P(LI)
                                                                          SA301510
   A(MM)=A(MM)+AC*PNM1
   IF(M.GT.O) B(M)=B(M)+AC+PNM2
                                                                          SA301520
                                                                          SA301530
10 CONTINUE
   RETURN
                                                                          SA301540
   END
                                                                          SA301550
                                                                          SA301560
   SUBROUTINE WGT1(NO.N1.P)
                                                                          SA301570
                                                                          SA301580
   DIMENSION D(50) .P(200)
                                                                          SA301590
   N4=(N1+1)/4
                                                                          SA301600
   AN=FLOAT(NO)
                                                                          SA301610
   CALL WGT2(N1,D)
                                                                          SA301620
   DO 10 J1=1.N4
                                                                          SA301630
   J3=N1/2+2-J1
                                                                          SA301640
   DJ=D(J1)/(4.#AN)
                                                                          SA301650
   P(J1)=DJ
                                                                          SA301660
10 P(J3)=DJ
   IF(INT(FLOAT(N1-1)/4.+.1) #4.NE.(N1-1)) GO TO 20
                                                                          SA301670
                                                                          SA301680
```

```
P(J1)=D(J1)/(4.*AN)
                                                                          SA301690
20 N4=(N1+1)/2
                                                                          SA301700
    P(N4)=P(N4)=2.
                                                                          SA301710
   RETURN
                                                                          5A301720
   END
                                                                          SA301730
                                                                          SA301740
    SUBROUTINE WGT2(N.D)
                                                                          SA301750
   DIMENSION A(50+50)+D(50)+C(50)
                                                                          SA301760
   DOUBLE PRECISION A.C.PI.AN
                                                                          SA301770
   DATA PI/3.141592653589793238462643D0/
                                                                          SA301780
   N3=(N+1)/4
                                                                          SA301790
   N4=N3+1
                                                                          5A301800
                                                                          SA301810
   DO 10 1=2.N4
   C(1)=1./FLOAT(241-1)
                                                                          SA301820
                                                                          SA301830
   A([:1)=1.
                                                                          5A301840
   A(I+N4)=0.
                                                                          SA301850
   DO 10 J=2.N3
    AN=2.*PI*DBLE(FLOAT(J-1))/DBLE(FLOAT(N-1))
                                                                          SA301860
10 A(I+J)=(DCOS(AN))++(2+I-2)
                                                                          SA301870
                                                                          SA301880
   C(1)=2.
    A(1.N4)=1.
                                                                          SA301890
                                                                          SA301900
   DO 20 J=1+N3
20 A(1.J)=2.
                                                                          SA301910
                                                                          SA301920
   N3=N4
    IF (INT (FLOAT (N-1)/4.+.1) #4.NE. (N-1)) N3=N3-1
                                                                          SA301930
   CALL GAUSEL(A, I, N3, N3, 1)
                                                                          SA301940
                                                                          SA301950
   DO 30 I=1.N3
30 D(1)=C(1)
                                                                          SA301960
   RETURN
                                                                          SA301970
                                                                          SA301980
   END
                                                                          SA301990
    SUBROUTINE WGT3(NO.N1.P)
                                                                          SA302000
                                                                          SA302010
   DIMENSION P(200)
   DATA PI/3.14159265358979323846/
                                                                          SA302020
                                                                          SA302030
   D2=2. "PI/FLOAT(N1-1)
                                                                          SA302040
   E1=(SIN(D2/4.)) ++2
                                                                          SA302050
   E2=SIN(D2/2.)
   P(1)=E1/(2.*FLOAT(NO))
                                                                          SA302060
   N2 = (N1+1)/2
                                                                          SA302070
                                                                          SA302080
   P(N2)=P(1)+2.
                                                                          SA302090
   IF(N1.LE.3) RETURN
                                                                          SA302100
   N3=N2-1
                                                                          SA302110
   DO 10 L=2.N3
   S2=SIN(D2#FLOAT(L-1))
                                                                          5A302120
   P(L)=A"5(S2*E2)/(2.*FLOAT(NO))
                                                                          SA302130
10 CONTINU
                                                                          SA302140
   RETURN
                                                                          SA302150
   END
                                                                          SA302160
                                                                          SA302170
   SUBROUTINE GAUSEL (A,C,M,N,IT)
                                                                          SA302180
   DIMENSION A(50+50)+C(50)+IB(50)
                                                                          SA302190
   DOUBLE PRECISION A.C.D
                                                                          SA302200
   WRITE(6.03)
                                                                        · SA302210
                                                                          SA302220
   DO 20 I=1.M
20 WRITE(6,04) (A(I,J),J=1.N),C(I)
                                                                          SA302230
                                                                          SA302240
   DO 70 I=1.N
                                                                          SA302250
70 IB(1)=1
   DO 60 I=1.M
                                                                          SA302260
   IF(IT.NE.O.AND.M.NE.N) GO TO 35
                                                                          SA302270
                                                                          SA302280
   D=0.
```

```
JJ=0
DO 10 J=1.N
                                                                              SA302290
SA302300
                                                                              SA302310
      IF(DABS(A(I.J)).LE.D) GO TO 10
                                                                              SA302320
      JJ=J
                                                                              SA302330
      D=DABS(A([,J))
                                                                              SA302340
   10 CONTINUE
                                                                              SA302350
      IF(JJ.EQ.1) GO TO 35
                                                                              SA302360
      IF(JJ.NE.0) GO TO 140
                                                                              SA302370
      WRITE(6.01) I
                                                                              SA302380
      GO TO 110
  140 DO 160 J=1.M
                                                                              SA302390
                                                                              SA302400
      D=A(J.JJ)
                                                                              SA302410
      11. LIA= (LL.L)A
                                                                              SA302420
  160 A(J.1)=D
                                                                              SA302430
      ID=IB(JJ)
                                                                              SA302440
      IB(JJ)=IB(I)
                                                                              SA302450
      18(1)=1D
                                                                              SA302460
   35 D=A(1+1)
                                                                              SA302470
      DO 30 J=1.M
                                                                              SA302480
   30 A(I,J)=A(I,J)/D
                                                                              SA302490
      C(1)=C(1)/D
                                                                              SA302500
      DO 50 J=1.M
      IF(J.EQ.1) GO TO 50
                                                                              SA302510
      D=A(J, I)
                                                                              SA302520
                                                                              SA302530
      IF (D.EQ.O.) GO TO 50
                                                                              SA302540
      DO 40 K=I+N
   40 A(J,K)=A(J,K)-D*A(I,K)
                                                                              SA302550
                                                                              SA302560
      C(J)=C(J)-D+C(I)
                                                                              SA302570
   50 CONTINUE
                                                                              SA302580
   60 CONTINUE
  110 IF(IT.EQ.O.OR.M.NE.N) GO TO 100
                                                                              SA302590
                                                                              SA302600
      DO 120 I=1.N
                                                                              SA302610
  120 A(I ,N) =C(I)
                                                                              SA302620
      DO 130 I=1.N
                                                                              SA302630
      11=18(1)
                                                                              SA302640
  130 C(II)=A(I,N)
                                                                              SA302650
  100 CONTINUE
      IF(IT.EQ.0) WRITE(6.02) (IB(I).I=1.N)
                                                                              SA302660
C
c
      WRITE(6.05)
                                                                              SA302670
                                                                              SA302680
      DO 80 I=1.M
                                                                              SA302690
   80 WRITE(6.04) (A(I.J).J=1.N).C(I)
                                                                              SA302700
      RETURN
                                                                              SA302710
   01 FORMAT(5H1ROW +12+14H IS ALL ZEROS.)
   02 FORMAT(24HOSINGLE PERMUTATION IS... 2013//)
                                                                              SA302720
   03 FORMAT(21HOTHE INPUT MATRIX IS9//)
                                                                              SA302730
   04 FORMAT(1H .7D16.8)
                                                                              SA302740
                                                                              SA302750
   05 FORMAT(22HOTHE OUTPUT MATRIX IS9//)
                                                                              SA302760
      END
                                                                              SA302770
                                                                              SA302780
      SUBROUTINE POLVAL (N1.N.PN)
      DIMENSION PN(10,200)
                                                                              SA302790
      DATA PI/3.14159265358979323846/
                                                                              SA302800
                                                                              SA302810
      D2=2.*PI/FLOAT(N1-1)
      N2=(N1+1)/2
                                                                              SA302820
      DO 10 I=1.N2
                                                                              SA302830
      A2=D2*FLOAT(I-1)
                                                                              SA302840
                                                                              SA302850
      C2=C05(A2)
      NN=N+1
                                                                              SA302860
                                                                              SA302870
      DO 10 MM=1.NN
                                                                              SA302880
      M=MM-1
```

```
PN(MM,I)=SPNM(N,M,C2)
                                                                        SA302890
10 CONTINUE
                                                                        SA302900
   RETURN
                                                                        SA302910
                                                                        SA302920
   FND
                                                                        SA302930
   SUBROUTINE SHIFT (F.NO.N1.CV.CS.CZ)
                                                                        SA302940
   DIMENSION F(800)
                                                                        SA302950
   P1=(F(1)+F(N1))/2.
                                                                        SA302960
                                                                        SA302970
   N3=(N1+1)/2
   P2=F(N3)
                                                                        SA302980
   DO 10 KO=1.NO
                                                                        SA302990
                                                                        SA303000
   KS=1+(K0-1)#N1
   KE=KO+N1
                                                                        SA303010
   KK=N3+(K0-1)*N1
                                                                        SA303020
   COR=(2.*P1+P2-F(K5)-F(KK)-F(KE))/3.
                                                                        SA303030
   DO 10 LO=1.N1
                                                                        SA303040
   KK=L0+(K0-1)*N1
                                                                        SA303050
10 F(KK)=(F(KK)+COR)+CV/(CS-CZ)
                                                                        SA303060
   RETURN
                                                                        SA303070
   END
                                                                        SA303080
                                                                        SA303090
   SUBROUTINE PRINTI(W)
                                                                        SA303100
   DIMENSION R(3) . S(3) . W(3)
                                                                        SA303110
                                                                        SA303120
   DATA ST.GT/1H-+1H+/
   P1=3.14159265
                                                                        SA303130
   DO 10 I=1.3
                                                                        SA303140
                                                                        SA303150
10 S(1) =- W(1)
   R(1)=SQRT(S(1) ##2+5(2) ##2+5(3) ##2)
                                                                        SA303160
   R(2) = ATAN2(S(2) + S(1)) +180 -/P1
                                                                        SA303170
   R(3)=ATAN2(SQRT(S(1)##2+S(2)##2)+S(3))#180+/P1
                                                                        SA303180
   W3=ABS(W(3))
                                                                        SA303190
   W32= . 2 + W3
                                                                        SA303200
   AM1=SQRT(S(1)+#2+S(2)+#2)
                                                                        SA303210
   AM12=.2*AM1
                                                                        SA303220
   PRINT 11. AM1
                                                                        SA303230
   PRINT 12 . R(2)
                                                                        SA303240
   PRINT 13. AM12
                                                                        SA303250
   PRINT 14. W3
                                                                        SA303260
   IF(S(3).LT.O.) PRINT 15, ST
                                                                        SA303270
   IF(S(3).GE.O.) PRINT 15, GT
                                                                        SA303280
   PRINT 16. W32
                                                                        SA303290
                   THE COMPENSATING MAGNET FOR THE XY-PLANE SHOULD B
11 FORMAT(54H
                                                                        SA303300
  +,2HE ,F7,1,7H GAUSS-)
                                                                        SA303310
12 FORMAT (47H CENTIMETER-CUBED WITH THE NORTH POLE POINTING ,F6.1,
                                                                        SA303320
 +17H DEGREES FROM +X.)
                                                                        SA303330
13 FORMAT(25H (THE MAGNET SHOULD READ .F7.1,21H GAMMA AT ONE METER.))SA303340
14 FORMAT (43H
                   THE COMPENSATING MAGNET FOR THE Z-AXIS.
                                                                        SA303350
  +11H SHOULD BE .F7.1.7H GAUSS-1
                                                                        SA303360
15 FORMAT(46H CENTIMETER-CUBED WITH THE NORTH POLE POINTING.
                                                                        SA303370
  +9H TOWARDS ,A1,14HZ. (THE MAGNET)
                                                                        SA303380
16 FORMAT(13H SHOULD READ ,F7.1,22H GAMMA AT ONE METER.))
                                                                        SA303390
   RETURN
                                                                        SA303400
                                                                        SA303410
   FND
                                                                        SA303420
   FUNCTION SPNM(N,M,X)
                                                                        SA303430
   SPNM=PNM(N,M,X)
                                                                        SA303440
   IF (M.EQ.O.OR.M.GT.N) RETURN
                                                                        SA303450
   SPNM=SQRT(2. *ANF(N-M)/ANF(N+M)) *SPNM
                                                                        SA303460
   RETURN
                                                                        SA303470
   END
                                                                        SA303480
```

```
SA303490
   FUNCTION PNM(N,M,X)
                                                                         SA303500
                                                                         SA303510
   PNM=0.
   IF (M.GT.N) RETURN
                                                                         SA303520
   IF ((ABS(1.-ABS(X))).GT.1.E-9) GO TO 20
                                                                         SA303530
                                                                         SA303540
   IF (M.NE.O) RETURN
                                                                         SA303550
   PNM=-1.
   IF (X.GT.O..OR.N.EQ.INT(FLOAT(N)/2.+.1)+2) PNM-1.
                                                                         SA303560
   RETURN
                                                                         SA303570
                                                                         SA303580
20 CMM=(2.**N)*ANF(N)*ANF(N-M)
   PNM=1.
                                                                         SA303590
                                                                         SA303600
   IF(M.NE.O) PNM=SQRT(1.-X*X)**M
   CNM=ANF(2*N)*PNM/CNM
                                                                         SA303610
   PNM=1.
                                                                         SA303620
   IF (M.NE.N) PNM=X**(N-M)
                                                                         SA303630
   IF(N-M.LE.1) GO TO 40
                                                                         SA303640
   PRD1=1.
                                                                         SA303650
   NT=(N-M)/2
                                                                         SA303660
   DO 30 I=1.NT
                                                                         SA303670
   AN1=FLOAT(N-M-2*1+2)
                                                                         SA303680
   AN2=FLOAT(2*I)
                                                                         SA303690
   AN3=FLOAT(2*N-2*I+1)
                                                                         5A303700
   PRD1=-PRD1+AN1+(AN1-1)/(AN2+AN3)
                                                                         SA303710
   NE=N-M-2#I
                                                                         SA303720
                                                                         SA303730
   AN1=1.
   IF (NE.GT.O) AN1=X**NE
                                                                         SA303740
   PNM=PNM+PRD1*AN1
                                                                         SA303750
30 CONTINUE
                                                                         SA303760
40 PNM=CNM#PNM
                                                                         SA303770
   RETURN
                                                                         SA303780
   END
                                                                         SA303790
                                                                         SA303800
   FUNCTION ANF(N)
                                                                         SA303810
   DOUBLE PRECISION AN
                                                                         SA303820
   ANF=1.
                                                                         SA303830
                                                                         SA303840
   AN=1.D0
   IF(N.LT.O) PRINT 01
                                                                         SA303850
   IF(N.LT.2) RETURN
                                                                         SA303860
                                                                         SA303870
   DO 10 I=2.N
10 AN=AN+DBLE(FLOAT(I))
                                                                         SA303880
   ANF=SNGL(AN)
                                                                         SA303890
   RETURN
                                                                         SA303900
01 FORMAT(37H1FACTORIAL INTEGER IS LESS THAN ZERO.//)
                                                                         SA303910
                                                                         SA303920
   END
                                                                         SA303930
   SUBROUTINE SPCOOR(D,R)
                                                                         SA303940
   DIMENSION D(3) +R(3)
                                                                         SA303950
   DATA PI/3.14159265358979/
                                                                         SA303960
   R(1)=SQRT(DOT(D,'
                                                                         5A303970
   R(2)=0.
                                                                         SA303980
   R(3)=0.
                                                                         SA303990
   IF(R(1).EQ.O.) RETURN
                                                                         SA304000
   IF(D(1) ++2+D(2) ++2.NE.O.) R(2) =ATAN2(D(2).D(1))+180./PI
                                                                         SA304010
   R(3)=ATAN2(SQRT(D(1)##2+D(2)##2)+D(3))#180+/PI
                                                                         SA304020
   RETURN
                                                                         SA304030
                                                                         SA304040
   END
                                                                         SA304050
   SUBROUTINE SUM(A,X,B,Y,Z)
                                                                         SA304060
   DIMENSION X(3) + Y(3) + Z(3)
                                                                         SA304070
                                                                         SA304080
   DO 10 I=1+3
```

```
10 2(1)=A+X(1)+B+Y(1)
                                                                       5A304090
                                                                       SA304100
   RETURN
   END
                                                                       SA304110
                                                                       SA304120
   FUNCTION DOT(X+Y)
                                                                       SA304130
                                                                       SA304140
   DIMENSION X(3),Y(3)
   DOT=X(1)*Y(1)+X(2)*Y(2)+X(3)*Y(3)
                                                                       SA304150
   RETURN
                                                                       SA304160
   FND
                                                                       SA304170
                                                                       SA304180
   SUBROUTINE PRINTF(F.NO.N1)
                                                                       SA304190
   DIMENSION F(800) . F1(100)
                                                                       SA304200
                                                                       SA304210
   DO 20 KO=1.NO
                                                                       SA304220
  DO 10 I=1.N1
  II=I+(K0-1)*N1
                                                                       SA304230
                                                                       SA304240
10 F1(I)=F(II)+1.E5
                                                                       SA304250
   WRITE(6.01) KO
20 WRITE(6+02) (F1(KK)+KK=1+N1)
                                                                       SA304260
01 FORMAT(11HOCURVE NO. +12)
                                                                       SA304270
02 FORMAT(1H .8F8.1)
                                                                       SA304280
  RETURN
                                                                       SA304290
  END
                                                                       SA304300
                                                                       SA304310
   SUBROUTINE DATPLT(NO.N1.F.YDIST)
                                                                       SA304320
   DIMENSION F(1000) +F1(33) +F2(73) +X(33) +X1(73) +C(1 )+P(1 )+CH(16)
                                                                       SA304330
                                                                       SA304340
   DATA PI/3.14159265358979/
  DATA CH/1H1,1H2,1H3,1H4,1H5,1H6,1H7,1H8,1H9,2H10,2H11,2H12,2H13,
                                                                       SA304350
  + 2H14,2H15,2H16/
                                                                       5A304360
                                                                       SA304370
  N3=N0+N1
   CALL YSCALE (N3.F.YDIST.YMAX.YMIN)
                                                                       SA304380
   DX=360./FLOAT(N1-1)
                                                                       SA304390
  F1(1)=F1(2)=YMAX S X(1)=0. S X(2)=360.
                                                                       SA304400
  CALL CALCM1 (2, X, F1, 0, 0, , 360, , YMIN, YMAX, 6, , 7, +TITLE, 0,
                                                                       SA304410
  + 20HCOLATITUDE (DEGREES),-20,30HNORMAL MAGNETIC FIELD (GAMMAS),
                                                                       SA304420
                                                                       SA304430
  + 30.0.18)
   F1(2)=YMIN $ X(1)=X(2)=360.
                                                                       SA304440
                                                                       SA304450
  CALL CALCM1 (-2, X, F1, 0)
  F1(1)=F1(2)=0.
                    $ X(1)=360. $ X(2)=0.
                                                                       SA304460
   IF(YMAX.GT.O.O.AND.YMIN.LT.O.O) CALL CALCM1(-2,X,F1,O)
                                                                       SA304470
                                                                       SA304480
  DO 10 I=1.N1
10 X(I)=DX#FLOAT(I-1)
                                                                       SA304490
                                                                       SA304500
   DO 20 I=1.73
                                                                       SA304510
20 X1(I)=5.#FLOAT(I-1)
  IJ=0
                                                                       SA304520
                                                                       SA304530
  DO 50 I=1.NO
  DO 30 J=1.N1
                                                                       SA304540
                                                                       SA304550
  | J=| J+1
30 F1(J)=F(IJ)+1.E+5
                                                                       SA304560
  CALL FNCTON(F1.N1-1.C.CO.P.N2.DEV)
                                                                       SA304570
                                                                       SA304580
  DO 40 N=1,N2
                                                                       SA304590
  EN=N
  DO 40 J=1.73
                                                                       SA304600
  XX=X1(J) #PI/180.
                                                                       SA304610
  IF(N.EQ.1) F2(J)=C0
                                                                       SA304620
40 F2(J)=F2(J)+C(N)*SIN(EN*XX+P(N))
                                                                       SA304630
  CALL CALCM1(-73,X1,F2,0)
                                                                       SA304640
  DO 50 J=1.N1
                                                                       SA304650
  NC=1+1/10
                                                                       SA304660
  CALL SYMBL4(X(J)/60.+(F1(J)-YMIN)/YDIST+.08+CH(I)+0.+NC)
                                                                       SA304670
50 CONTINUE
                                                                       SA304680
```

```
RETURN
                                                                         SA304690
                                                                         5A304700
                                                                         SA304710
   SUBROUTINE FNCTON(F.NSCANS.C.CO.PHI.N2.DEV)
                                                                         SA304720
   DIMENSION F(1) + G(33) + C(1) + PHI(1)
                                                                         SA304730
   DATA PI/3.14159265358979/
                                                                         SA304740
   DX=2. *PI/FLOAT(NSCANS)
                                                                         SA304750
   NE=NSCANS/2+1
                                                                         SA304760
   CO=0.
                                                                         SA304770
   DO 10 J=1.NSCANS
                                                                         SA304780
10 CO=CO+F(J)/FLOAT(NSCANS)
                                                                         SA304790
   DO 30 N=1.NE
                                                                         SA304800
   EN=N
                                                                         SA304810
   51=0.
                                                                         SA304820
   C1=0.
                                                                         SA304830
   X = -DX
                                                                         SA304840
   DO 20 J=1.NSCANS
                                                                         SA304850
   X = X + DX
                                                                         SA304860
   S1=S1+(1./PI)*F(J)*SIN(EN*X)*DX
                                                                         SA304870
20 C1=C1+(1./P1)*F(J)*COS(EN*X)*DX
                                                                         SA304880
   C(N) = SQRT(S1 ** 2 + C1 ** 2)
                                                                         5/304890
   IF ((FLOAT(N)).EQ.(FLOAT(NSCANS)/2.)) C(N)=C(N)/2.
                                                                         SA304900
   PHI(N)=0.0
                                                                         SA304910
30 IF((S1##2+C1##2).NE.O.) PHI(N)=ATAN2(C1.51)
                                                                         SA304920
   DO 50 N=1 .NE
                                                                         SA304930
   EN=N
                                                                         5A304940
   X = -DX
                                                                         SA304950
   DEV1=0.
                                                                         SA304960
   DO 40 J=1, NSCANS
                                                                         SA304970
                                                                         SA304980
   X = X + DX
   IF(N.EQ.1) G(J)=C0
                                                                         SA304990
   G(J)=G(J)+C(N)*SIN(EN*X+PHI(N))
                                                                         SA305000
40 [F(ABS(G(J)-F(J)).GT.DEV1) DEV1=ABS(G(J)-F(J))
                                                                         SA305010
   IF(N.EQ.1) DEV=DEV1
                                                                         SA305020
   IF(N.EQ.1) N2=1
                                                                         SA305030
   IF (DEV1.LT.DEV) N2=N
                                                                         SA305040
                                                                         SA305050
   IF (DEV1.LT.DEV) DEV=DEV1
50 CONTINUE
                                                                         SA305060
  RETURN
                                                                         SA305070
   END
                                                                         SA305080
                                                                         SA305090
   SUBROUTINE YSCALE(N,F,YD,YX,YM)
                                                                         SA305100
   DIMENSION F(800)
                                                                         SA305110
   PP=F(1)
                                                                         SA305120
   PN=PP
                                                                         SA305130
   DO 10 I=1.N
                                                                         SA305140
   IF(F(I).GT.PP) PP=F(I)
                                                                         SA305150
   IF(F(I).LT.PN) PN=F(I)
                                                                         SA305160
10 CONTINUE
                                                                         SA305170
   PP=PP#1.E+5
                                                                         SA305180
   PN=PN+1.E+5
                                                                         SA305190
   P=PP-PN
                                                                         SA305200
   SN=0.
                                                                         SA305210
   IF (PP.GT.O.) SN=1.
                                                                         SA305220
                                                                         SA305230
   IF (YD.NE.O.) GO TO 50
   DO 20 I=1.21
                                                                         SA305240
   FA=(1.E-9)*(10.**I)
                                                                         SA305250
   FA1=FA+.1
                                                                         SA305260
                                                                         SA305270
   IF(P/FA.GE.1.) GO TO 20
                                                                         SA305280
   GO TO 30
```

20	CONTINUE	5A305290
30	YD=5. #FA'1	SA305300
	YX=FLOAT(INT(PP/YD+SN))*YD	51305310
	YM=YX-7.#YD	SA305320
	CN=4.	SA305330
	DO 40 I=1.3	SA305340
	CN=CN+.5	SA305350
	YD1=CN+FA1	SA305360
	YX1=FLOAT(INT(PP/YD1+SN))*YD1	SA305370
	YM1=YX1-7. #YD1	SA305380
	IF((7.*YD1-P).LT.0.0.O.OR.YX1.LT.PP.OR.YM1.GT.PN) RETURN	SA305390
	YD=YD1	SA305400
	YX=YX1	SA305410
	YM=YM1	SA305420
40	CONTINUE	SA305430
_	YX=FLOAT(INT(PP/YD+SN))*YD	SA305440
	YM=YX-7.*YD	SA305450
	RETURN	5A305460
	END	SA305470

APPENDIX F

SAMPLE PROBLEMS FOR SA3024

I. PROBLEM EXECUTED ON INTERCOM (TIME-SHARING SYSTEM)

NOL INTERCOM TYPE "LOGIN." LØGIN(S) 024533LACK/

09/07/73 14.35.39. BD/42/31 C- SETUP.FØRTRAN

14.36.03. 09/07/73 ON AT

**FØRTRAN

**NEW OR OLD FILE- ATTACH(BN3024,BN3024)*ATTACH(DAT024,DAT024)

14.36.38.ATTACH(BN3024,BN3024)

14.36.42.ATTACH(DAT024,DAT024)

**READY.

REWIND(BN3024) * COPYBR(BN3024, FIL, 16) * RETURN(BN3024) * TAPE(ON)

**READY.

FIL.	
6 25 3	1 0 1
96.00 1.000	0.000
1	
6 25 3	0 0 0
96.00 1.000	0.000
0	
10 0 -5043	-4755 -3815 -1233 4384 12737 17492
12596 4313 -1257	-3821 -4763 -5027 -4998 -4765 -4365
-3863 -3410 -3226	-3394 -3865 -4359 -4767 -4990 -5037
-9028 -8812 -8146	-6754 -4208 -1189 272 -1197 -4267
-6727 -8155 -8806	-9041 -8976 -8510 -7287 -4838 -1645
72 -1604 -4806	-7289 -8504 -8971 -9037-13025-12877
	-10968-10779-10971-11484-12066-12554
- 12883-13030-12926-	
-4064 -9930-12196-	-12910-13042-17035-16916-16423-15194

Data Tape

-12819 -9618 -8009 -9665-12770-15201-16425-16920-17041 -16906-16408-15151-12748 -9465 -7798 -9462-12745-15181 -16416-16911-17037-21024-20924-20199-17884-12022 -2110 4183 -2072-12092-17925-20192-20911-21036-20884-20568

-20056-19474-18985-18775-18979-19477-20063-20545-20886

-21034-25024-24970-24520-23278-20863-17702-15987-17628

SNAM

NO = 6.

N1 = 25,

NH = 3,

IR = 1,

IP1 = 0,

IW = 1,

RI = 0.96E+02

CV = 0.1F+01.

PY = 0.0,

S END

ENTER 1 ØR O TØ INDICATE DATA FRINT ØR NØT:

THE MONOPOLE MOMENT IS --

CURVE NO. -528.4 -499.6 -405.6 -147.4 414.3 1249.6 1725.1 1235.5 -149.8 -406.2 -500.4 -526.8 -523.9 407.2 -500.6 -460.6 -410.4 -365.1 -346.7 -363.5 -410.6 -460.0 -500.8 -523.1 -527.8 CURVE NO. 2 -527.0 -505.4 -438.8 -299.6 -45.0 256.9 403.0 256.1 -50.9 -296.9 -439.7 -504.8 -528 - 3 -521.8 -475.2 -352.9 -108.0 211.3 383.0 215.4 -104.8 -353.1 -474.6 -521.3 -527.9

14.339536

```
-527.0
         -512.2
                 -478.9
                         -431.1 -372.5 -321.3 -302.4 -321.6
  -372.9
         -431.1 -479.9
                         -512.8 -527.5 -517.1 -443.5 -215.0
   380.9
          1364.7 1994.9 1370.7
                                         -217.5 -444.1 -515.5
                                  369 • 1
  -528.7
CURVE NO.
         -515.5
  -527.4
                 -466.2 -343.3 -105.8
                                         214 3
                                                  375.2
                                                          209.6
  -100.9
         -344.0
                  -466.4 -515.9
                                 -528.0 -514.5 -464.7 -339.0
          229.6
   -98.7
                  396.3
                          229.9
                                  -96.4 -342.0 -465.5 -515.0
  -527.6
CURVE NO.
          5
  -527.0 -517.0
                 -444.5 -213.0
                                  373.2
                                         1364.4 1993.7 1368.2
         -217.1
                 -443.8 -515.7 -528.2
                                         -513.0 -481.4 -430.2
   366.2
  -372.0
         -323.1
                 -302.1 -322.5 -372.3 -430.9 -479.1 -513.2
  -528.0
CURVE NO.
          6
         -521.5 -476.5 -352.3 -110.8
  -526.9
                                          205.3
                                                  376.8
                                                          212.7
  -107.4
         -354.4
                 -472.9 -521.5 -528.1
                                         -506.2 -440.1 -298.8
                                  -45.2 -295.7 -439.1 -506.0
   -47.0
          261.9
                  408 . 8
                          255.2
  -528.0
(DX,DY,DZ) =
                825.54
                         . 211.43
                                     20.71
(D,02,01) =
                          -14.37
                852.44
                                     88 . 61
    THE COMPENSATING MAGNET FOR THE XY-PLANE SHOULD BE
                                                        852.2 GAUSS-
CENTIMETER-CUBED WITH THE NORTH POLE POINTING 165.6 DEGREES FROM +X.
(THE MAGNET SHOULD READ
                         170.4 GAMMA AT ONE METER.)
    THE COMPENSATING MAGNET FOR THE Z-AXIS SHOULD BE
                                                       20.7 GAUSS-
CENTIMETER-CUBED WITH THE NORTH POLE POINTING TOWARDS -Z. (THE MAGNET
SHOULD READ
               4.1 CAMMA AT ONE METER.)
THE A & B COFFFS. FOR THE 1TH HARMONIC ARE:
   •207106285746F+02
                      .825542024056E+03
  -.211426879295E+03
THE QUADRUPULE MOMENTS 011,022,033,012,013,023 ARE --
  .913801584473E+07
                     •996620668908E+07 -•191042225338E+08
  •141965058911E+05
                      • 189 439835558E+05
                                         •902315837020E+04
THE A & B COFFFS. FOR THE 2TH HARMONIC ARE:
                      •109373140054E+05 -•239078103461E+06
  -.955211126691F+07
   •520952291397E+04
                      .819635649778F+04
THE A & B COFFFS. FOR THE 3TH HARMONIC ARE:
                                        •261662613936E+07
                      •734751632135E+08
                                                              .23785770
  -.108665709727F+07
1231E+10
                                          ·393914212069E+07
   • 446316961324E+07
                      • 3069 33172 460F +06
```

CURVE NO.

SNAM

NO = 6,

N1 = 25,

NH = 3,

IR = 0,

IP1 = 0,

IW = 0,

R1 = 0.96E+02

CV = 0.1E+01

PY = 0.0,

S END

ENTER 1 ØR 0 TØ INDICATE DATA PRINT ØR NØT:

THE MONOPOLE MOMENT IS -- 15.233732

(DX,DY,DZ) = 827.69 -212.94 20.70(D,02.01) = 854.67 -14.37 88.61

THE COMPENSATING MAGNET FOR THE XY-PLANE SHOULD BE 854.4 GAUSS-CENTIMETER-CUBED WITH THE NORTH POLE POINTING 165.6 DEGREES FROM +X. (THE MAGNET SHOULD READ 170.9 GAMMA AT ONE METER.)

THE COMPENSATING MAGNET FOR THE Z-AXIS SHOULD BE 20.7 GAUSS-CENTIMETER-CUBED WITH THE NORTH POLE POINTING TOWARDS -Z. (THE MAGNET SHOULD READ 4.1 GAMMA AT ONE METER.)

THE A & B COEFFS. FOR THE 1TH HARMONIC ARE:

•206988483703E+02 •827692992075E+03

-.212041720726E+03

THE QUADRUPOLE MOMENTS 011,022,033,012,013,023 ARE --

.907751557573E+07 .990809608352E+07 -.189856116592E+08

•142413793441E+05 •190259234406E+05 •904881389053E+04

THE A & B COEFFS. FOR THE 2TH HARMONIC ARE:

-.949280582962E+07 .109846220200E+05 -.239767939880E+06

•522433513554E+04 •822226419797E+04

THE A & B COEFFS. FOR THE 3TH HARMONIC ARE:

-.109329743425E+07 .736637847141E+08 .262663903488E+07 .23853972

2966E+10

• 447595915074E+07 • 307504565712E+06 • 394909710659E+07

14.47.58.STOP

**READY.

LØGOUT.

CP TIME 2.824

PP TIME 80.985

CØNNECT TIME 0 HR 14 MIN 12 SEC

TØTAL CØST ØF SESSIØN = \$ 3.72

09/07/73 LØGGED ØUT AT 14.49.51.<

Notes:

- 1. The file BN3024 is the binary version of SA3024. It consists of 19 binary records (subprograms). The last three are plotting routines and are not used when executing problems on INTERCOM.
- 2. The information typed in by the user has been underlined.

(CONT.) APPENDIX II. PROBLEM SUBMITTED TO BATCH

```
024533LACK/
             14.50.40. BD/42/31
 09/07/73
C - SETUP - GENERAL
           14.51.17. 09/07/73
ON AT
**GENERAL
* *NEW CR OLD FILE- NEW/IECCO24*TAPE(ON)
**READY.
1 IECC3ST, P1, T060, CM060000.55302435,024, LACKEY.
2ATTACH(ABC, NOLBIN)
3COPYN(O, DEF, ABC)
4RETURN(ABC)
5ATTACH(MHL, DATO24)
6 REWIND (MHL)
7 COPYBF (MHL, DATO24)
8 RETURN(MHL)
9 ATTACH (BN 3024) BN 3024)
1 OLØAD(BN3024)
11DEF.
12*WEØR
1 4REWIND(ABC)
15GOULD1, 14, ABC
16*WEØR
5 49 0
           25
                   3
        6
5500
       96.00 1.000
                        0.000
5510
5520
           25
                  3
                             1
5530
       96.00
              1.000
                        0.000
5540
        Û
5550
        10
               0 -5043 -4755 -3815 -1233 4384 12737 17492
5560 12596 4313 -1257 -3621 -4763 -5027 -4998 -4765 -4365
5570 -3863 -3410 -3226 -3394 -3865 -4359 -4767 -4990 -5037
5580 -9028 -8812 -8146 -6754 -4208 -1189
```

5590 -6727 -8155 -8806 -9041 -8976 -8510 -7287 -4838 -1645

5610-12544-12066-11480-10968-10779-10971-11464-12066-12554

NØL INTERCØM TYPE "LOGIN."

LØGIN(S)

Tape prepared beforehand in LOCAL mode

72 -1604 -4806 -7289 -8504 -8971 -9037-13025-12877

272 -1197 -4267

```
5620-12883-13030-12926-12190 -9905 -3946 5892 12194 5952
5630 -4064 -9930-12196-12910-13042-17035-16916-16423-15194
5640-12819 -9618 -8009 -9665-12770-15201-16425-16920-17041
5650-16906-16408-15151-12748 -9465 -7798 -9462-12745-15181
5660-16416-16911-17037-21024-20924-20199-17884-12022 -2110
5670 4183 -2072-12092-17925-20192-20911-21036-20884-20568
5680-20056-19474-18985-18775-18979-19477-20063-20545-20886
5690-21034-25024-24970-24520-23278-20863-17702-15987-17628
5700-20829-23299-24484-24970-25036-24817-24156-22743-20225
5710-17136-15667-17203-20207-22712-24146-24815-25035
5720 0 0 0 0
TAPE(ØFF)
```

Tape prepared beforehand in LOCAL mode

SAVE*PURGE(IECCO24)*BATCH.*QUEUES.

**SAVED IECCO24 14.58.13.PURGE(IECCO24) TYPE FILE NAME-IECCO24

TYPE DISPOSITION-INPUT

TYPE FILE NAME-END

```
OUEUES 15.00.35. I= 19, 0= 3, P=v' 1, C= 2.
INFUT = 19
CBCGUB1-5 ECAAGBY-3 HHJFI8B-2 SAFCSBN-2 DCCXX8Z-3 SAFCSBI-2
BCAJH8E-2 HHJ1J74-2 HHJF18A-2 AJFG084-3 SAFHF71-2 IECC386-1
ICCBC8X-4 IGBJE7T-2 HHJMV8M-2 HHJ1J8L-2 DBCJG8W-2 IAJFS83-5
DCAEV8U-5
ØUTPUT= 3
BDASH80-0 IAJF03F-0 DAYF17G-0
PUNCH = 1
B DA SH80-0
COMMON= 2
SSSSSSU-0 SSSSSST-0
CONTROL PTS.
AJFVD78-2 HHJFI79-5 GRID68P-5 AJFG06Q-4 AJFXF54-2 GRIDF80-5
I AJF082-5
15.00.35.STØP
**RFADY.
LØGØUT.
```

CP TIME .949
PP TIME 144.517
CONNECT TIME O HR 11 MIN 2 SEC
TOTAL COST OF SESSION = \$ 3.75
O9/07/73 LOGGED OUT AT 15.01.42.<

Mote:

1. The information typed in by the user has been underlined.

APPENDIX G

LISTING OF SA4024

	PROGRAM DIPDAT(INPUT=65,OUTPUT=65,TAPE5=INPUT,TAPE6=OUTPUT, + DAT024=65,TAPE7=DAT024,TAPE99)	SA400018 SA400020 SA400030 SA400040
c	SATELLITE DATA PROGRAM	SA400050 SA400060 SA400070
С С	THIS PROGRAM GENERATES AND PLOTS DATA REPRESENTING THE NORMAL COM- PONENT OF THE MAGNETIC FIELD FROM A SATELLITE. THE DATA IS ENTERED IN THE FOLLOWING ORDER	SA400080 SA400090 SA400100
C	NO - THE NUMBER OF GREAT CIRCLES OF DATA. (NO IS USUALLY EVEN. E.G NO=(N1-1)/2. THE PROGRAM STOPS IF NO=0.)	SA400110 SA400120 SA400130 SA400140
С С	N1 - THE NUMBER OF DATA POINTS PER GREAT CIRCLE. (N1 IS ALWAYS ODD. THE FIRST DATA POINT IS THE SAME AS THE LAST FOR EACH GREAT CIR- LE.)	SA400150 -SA400160 -SA400170 -SA400180
c	NH - THE TOTAL NUMBER OF DIFFERENT HARMONICS (DEGREES) OF MULTIPOLE MAGNETS TO BE CONSIDERED.	SA400190 SA400200 SA400210
c	IP - DETERMINES WHETHER OR NOT THE MAGNETIC DATA IS TO BE PLOTTED. (IP=0 MEANS THAT THE DATA WILL NOT BE PLOTTED.)	SA400220 SA400230 SA400240
c	R1 - THE RADIUS OF THE MEASUREMENT SPHERE IN INCHES. EG - THE EPROR (IN GAMMAS) TO BE RANDOMLY INSERTED INTO THE DATA TO	SA400250 SA400260 SA400270
c	REPRESENT INSTRUMENTATION INACCURACIES. EA - THE ERROR (IN DEGREES) TO BE RANDOMLY INSERTED INTO THE DATA TO	SA400280 SA400290 SA400300
Č	REPRESENT MEASUREMENT POSITION ERRORS. ED - THE CONSTANT ERROR (IN GAMMAS) TO BE INSERTED INTO THE DATA.	SA400310 SA400320 SA400330
C	(THIS WILL BE ANALYZED AS MONOPOLE MOMENT.)	SA400340 SA400350
C	PY - THE SCALE FACTOR (GAMMAS/INCH) FOR THE Y-AXIS IF THE DATA IS TO BE PLOTTED. (IF PY=0.0 A FACTOR WILL BE COMPUTED FROM THE DATA.)	SA400370 SA400380
C	F9 - THE FORMAT FOR READING AND PRINTING THE SPHERICAL COEFFICIENTS A(I) AND B(I).	SA400390 SA400400 SA400410 SA400420 SA400430
c c	DO ** NI=1.NH NN - THE HARMONIC NUMBER (DEGREE) OF THE MULTIPOLE DATA BEING READ IN. (NN=1 FOR DIPOLES. 2 FOR QUADRUPOLES. ETC.)	SA400440 SA400450 SA400460 SA400470 SA400480

```
NM - THE NUMBER OF MULTIPOLES WITH HARMONIC NUMBER NN.
                                                                         5A400490
SA400500
                                                                         SA400510
                                                                         SA400520
C
     DO ** NJ=1.NM
                                                                         SA400530
       P - THE POSITION VECTOR (IN INCHES) OF THE MULTIPOLE IN RECTANG- SA400540
C
C
           ULAR COORDINATES.
                                                                         SA400550
       A(I) - THE SPHERICAL COEFFICIENTS FOR THE MULTIPOLE OF DEGREE NN SA400570
C
              WHERE I=1,2,--,NN+1. (1-1 IS THE ORDER OF THE ITH COEFF.) SA400580
C
                                                                         SA400590
       B(1) - THE SPHERICAL COEFFICIENTS FOR THE MULTIPOLE OF DEGREE NN SA400600
C
C
              WHERE I=1,2,--,NN. (I IS THE ORDER OF THE ITH COEFF.)
                                                                         SA400610
                                                                         SA400620
C
       **NOTE** THE COEFFICIENTS FOR A DIPOLE OF MOMENT (DX.DY.DZ) ARE
                                                                         SA400630
                AS FOLLOWS --
                                                                         SA400640
C
                              A(1)=DZ. A(2)=DX. AND B(1)=DY.
                                                                         SA400650
                                                                         SA400660
                                                                         SA400670
  ** CONTINUE
                                                                         SA400680
                                                                         SA400690
  DIMENSION F(1000) • P(3) • A(11) • B(10) • R(3) • DM(3) • F1(3) • F9(7)
                                                                         SA400710
     +,A1(33),A2(1000)
                                                                         SA400720
      NAMELIST/NAM/NO.NI.NH.IP.RI.EG.EA.ED.PY
                                                                         SA400730
                                                                         SA400740
      DATA PI/3.14159265358979/
      IPT=0
                                                                         SA400750
   10 READ(5,01) NO.NI.NH.IP
                                                                         SA400760
      IF(IPT.EQ.O.AND.IP.NE.O) CALL CALCM1(0.10H024 LACKEY,-10.)
                                                                         SA400770
                                                                         SA400780
      IF(NO.EQ.O) GO TO 70
                                                                         SA400790
      IF(IP.NE.O) IPT=1
                                                                         SA400800
      READ(5.02) RI.EG.EA.ED.PY
                                                                         SA400810
      READ(5.04) F9
                                                                         SA400820
      WRITE (6.NAM)
                                                                         SA400830
      WRITE(6,14) F9
                                                                         SA400840
      D1=PI/FLOAT(NO)
                                                                         SA400850
      D2=2. #PI/FLOAT(N1-1)
                                                                         SA400860
      12=1
      00 50 NI=1.NH
                                                                         SA400870
      READ(5+01) NN.NM
                                                                         SA400880
                                                                         SA400890
      WRITE(6.03) NN.NM
                                                                         SA400900
      NN1 = NN + 1
                                                                         SA400910
      DO 40 NJ=1.NM
                                                                         SA400920
      READ(5:02) P
      READ(5.F9) (A(I), I=1,NN1)
                                                                         SA400930
      READ(5.F9) (B(I),I=1.NN)
                                                                         SA400940
                                                                         SA400950
      WRITE(6.02) P
                                                                         SA400960
      WRITE(6+F9) (A(1)+I=1+NN1)
      WRITE(6,F9) (B(I),I=1,NN)
                                                                         SA400970
      IF(NJ.EQ.1.AND.IZ.EQ.1) CALL SUM(0.,P.0.,P.DM)
                                                                         SA400980
      IF(NN.NE.1) GO TO 20
                                                                         SA400990
      DM(1) = DM(1) + A(2)
                                                                         SA401000
                                                                         SA401010
      DM(2) = DM(2) + B(1)
      DM(3) = DM(3) + A(1)
                                                                         SA401020
   20 DO 30 K=1.NO
                                                                         SA401030
      IF(IZ.EQ.1) A1(K)=FLOAT(K-1)*D1+(RANF(1.1)-.5)*2.*EA*PI/180.
                                                                         SA401040
      S1=SIN(A1(K))
                                                                         SA401050
                                                                         SA401060
      C1=COS(A1(K))
      DO 30 L=1.N1
                                                                         SA401070
                                                                         SA401080
      KL=L+(K-1) #N1
```

```
IF(IZ.EQ.1) A2(KL)=FLOAT(L-1) #D2+(RANF(1.1)-.5) #2. #EA#PI/180.
                                                                        SA401090
   S2=SIN(A2(KL))
                                                                        SA401100
   C2=COS(A2(KL))
                                                                        SA401110
                                                                        SA401120
   IF(IZ.EQ.1) F(KL)=0.
   R(1)=R1+C1+S2
                                                                        SA401130
                                                                        SA401140
   R(2) = R1 + S1 + S2
                                                                        SA401150
   R(3)=R1*C2
   CALL AMPFLD(R,P,NN,A,B,F1)
                                                                        SA401160
30 F(KL)=F(KL)+DOT(F1,R)/SQRT(DOT(R,R))
                                                                        SA401170
                                                                        SA401180
   1Z=0
40 CONTINUE
                                                                        SA401190
                                                                        SA401200
50 CONTINUE
                                                                        SA401210
   N3=N0#N1
                                                                        SA401220
   DO 60 I=1.N3
60 F(I)=F(I)+ED+1.E-5+(RANF(1.1)-.5)+2.E-5+EG
                                                                        SA401230
   CALL PRNPUF(F,NO,N1)
                                                                        SA401240
   CALL SPCOUR(DM.F1)
                                                                        SA401250
   WRITE(6.06) DM.F1
                                                                        SA401260
   IF(IP.NE.O) CALL DATPLT(NO.N1.F.PY)
                                                                        SA401270
   GO TO 10
                                                                        SA401280
70 IF(IPT.NE.0) CALL CALCM1(0.10H024 LACKEY.+10.)
                                                                        SA401290
                                                                        SA401300
   STOP
                                                                        SA401310
01 FORMAT(1415)
                                                                        SA401320
02 FORMAT(9F8.4)
03 FORMAT(48H1POSITION VECTOR AND COEFFICIENTS FOR NN ( NM = ,213,
                                                                        SA401330
                                                                        SA401340
  + 7H ARE --1
04 FORMAT (7A10)
                                                                        SA401350
06 FORMAT(20H1ACTUAL MOMENT IS --/3F20.12/3F20.12)
                                                                        SA401360
14 FORMAT(6H0F9 = •7A10)
                                                                        SA401370
                                                                        SA401380
                                                                        SA401390
   SUBROUTINE AMPFLD (R.P.N.A.B.F)
                                                                        SA401400
   DIMENSION R(3) .P(3) .A(11) .B(10) .F(3) .U(3) .V(3) .W(3)
                                                                        SA401410
   DATA PI/3.14159265358979/
                                                                        SA401420
   CALL SUM(1.,R,-1.,P,U)
                                                                        SA401430
                                                                        SA401440
   CALL SPCOOR(U,V)
   R1=V(1)+2.54
                                                                        SA401450
   IF(R1.NE.O.) GO TO 10
                                                                        SA401460
                                                                        SA401470
   PRINT 01
                                                                        SA401480
   RETURN
10 O1=V(2)*PI/180.
                                                                        SA401490
                                                                        SA401500
   02=V(3)*PI/180.
   $1=$IN(01) $ $2=$IN(02)
                                                                        SA401510
   C1=COS(O1) $ C2=COS(O2)
                                                                        SA401520
   U(1)=C1*S2 $ U(2)=S1*S2 $ U(3)=C2
                                                                        SA401530
   V(1)=C1+C2 $ V(2)=S1+C2 $ V(3)=-S2
                                                                        SA401540
              5 W(2) =C1
                                                                        SA401550
   W(1) = -S1
                           $ W(3)=0.
   H1=H2=H3=0.
                                                                        SA401560
                                                                        SA401570
   NN=N+1
                                                                        SA401580
   DO 30 MM=1,NN
                                                                        SA401590
   M = MM - 1
   P1=FLOAT(M) #01
                                                                        SA401600
   SM1=SIN(P1) $ CM1=COS(P1)
                                                                        SA401610
   P1=SPNM(N.M.C2)
                                                                        SA401620
                                                                        SA401630
   P2=SPNM(N,M+1,C2)
   P3=P4=0. $ CP=SQRT(FLOAT(N*(N+1))/2.)
                                                                        SA401640
   IF(M.EQ.0) GO TO 20
                                                                        SA401650
   P4=FLOAT((N-M+1)*(N-M+2))*PNM(N+1,M-1,C2)+PNM(N+1,M+1,C2)
                                                                        SA401660
   P4=.5*SQRT(2.*ANF(N-M)/ANF(N+M))*P4
                                                                        SA401670
   P3=C2*P4 $ CP=SQRT(FLOAT((N-M)*(N+M+1)))
                                                                        SA401680
```

```
20 B1=0.
                                                                        SA401690
   IF (M.GT.O) B1=B(M)
                                                                        SA401700
   A1=A(MM) +CM1+B1+SM1
                                                                        SA401710
                                                                        SA401720
   H1=H1+A1*P1
                                                                        SA401730
   H2=H2+A1+(CP+P2-P3)
   H3=H3+(A(MM; *SM1-B1*CM1)*P4
                                                                        :A401740
                                                                        SA401750
30 CONTINUE
                                                                        SA401760
   R1=R1++(N+2)
   H1=FLOAT(N+1) +H1/R1 $ H2=H2/R1 $ H3=H3/R1
                                                                        SA401770
   CALL SUM(H1.U.H2.V.F) $ CALL SUM(1.F.H3.W.F)
                                                                        SA401780
                                                                        SA401790
   RETURN
01 FORMAT(50H0FIELD VECTOR CANNOT BE COMPUTED AT POLE POSITION.//)
                                                                        SA401800
                                                                        SA401810
   END
                                                                        SA401820
                                                                        SA401830
   FUNCTION SPNM(N.M.X)
                                                                        SA401840
   SPNM=PNM(N.M.X)
   IF (M.EQ.O.OR.M.GT.N) RETURN
                                                                        SA401850
                                                                        SA401860
   SPNM=SQRT(2. *ANF(N-M)/ANF(N+M))*SPNM
                                                                        SA401870
   RETURN
                                                                        5#401880
   END
                                                                        SA401890
   FUNCTION PNM(N.M.X)
                                                                        SA401900
                                                                        SA401910
   PNM=0.
   IF (M.GT.N) RETUEN
                                                                        SA401920
                                                                        SA401930
   IF ((ABS(1.-ABS(X))).GT.1.E-9) GO TO 20
                                                                        SA401940
   IF (M.NE.O) RETURN
                                                                        SA401950
   PNM#-1.
   IF (X.GT.O..OR.N.EQ.INT(FLOAT(N)/2.+.1)*2) PNM=1.
                                                                        SA401960
                                                                        SA401970
   RETURN
                                                                        SA401980
20 CMM=(2. ++N) +ANF(N) +ANF(N-M)
                                                                        SA401990
   PNM=1.
   IF(M.NE.O) PNM=SQRT(1.-X+X)++M
                                                                        SA402000
                                                                        SA402010
   CNM=ANF(2+K)+PNM/CNM
                                                                        SA402020
   PNM=1.
   IF (M.NE.N) PNM=X++(N-M)
                                                                        SA402030
                                                                        SA402040
   [F(N-M.LE.1) GO TO 40
                                                                        SA402050
   PRD1=1.
                                                                        SA402060
   NT=[N-M]/2
   DO 30 -1 = 1 . NT
                                                                        SA402070
   AN1=FLOAT(N-M-2+1+2)
                                                                        SA402080
                                                                        SA402090
   AN2=FLOAT(2+I)
   AN3=FLOAT(2*N-2*I+1)
                                                                        SA402100
   PRD1=-PRD1+AN1+(AN1-1)/(AN2+AN3)
                                                                        SA402110
                                                                        SA402120
   NE=N-M-2*I
   AN1=1.
                                                                        SA402130
   IF (NE.GT.O) AN1=X**NE
                                                                        SA402140
                                                                        SA402150
   PNM=PNM+PRD1 #AN1
30 CONTINUE
                                                                        SA402160
                                                                        5A402170
40 PMM=CNM#PNM
                                                                        SA402180
   RETURN
   END
                                                                        SA402190
                                                                        SA402200
   FUNCTION ANF(N)
                                                                        SA402210
                                                                        SA402220
   DOUBLE PRECISION AN
   ANF=1.
                                                                        SA402230
                                                                        SA402240
   AN=1.D0
   IF(N.LT.O) PRINT 01
                                                                        SA402250
                                                                        SA402260
   IF(N.LT.2) RETURN
                                                                        SA402270
   DO 10 I=2+N
10 AN=AN+DBLE(FLOAT(I))
                                                                        SA402280
```

```
ANF = SNGL (AN)
                                                                          SA402290
                                                                          SA402300
   RETURN
                                                                          SA402310
01 FORMAT(37H)FACTORIAL INTEGER IS LESS THAN ZERO.//)
                                                                          SA402320
   END
                                                                          SA402330
                                                                          SA402340
   SUBROUTINE SPCOOR (D.R.)
                                                                          SA402350
   DIMENSION D(3) +R(3)
                                                                          SA402360
   DATA PI/3.14159265358979/
                                                                          SA402370
   R(1)=SQRT(DOT(D.D))
                                                                          SA402380
   R(2) = 0.
                                                                          SA402390
   R(3)=0.
                                                                          SA402400
   IF(R(1).EQ.O.) RETURN
   IF(D(1)**2+D(2)**2.NE.O.) R(2)=ATAN2(D(2).D(1))*180./PI
                                                                          SA402410
                                                                          SA402420
   R(3) = ATAN2(SQRT(D(1) + +2 + D(2) + +2) + D(3)) + 180 + /PI
                                                                          SA402430
   RETURN
   END
                                                                          SA402440
                                                                          SA402450
                                                                          SA402460
   SUBROUTINE SUM(A,X,B,Y,Z)
   DIMENSION X(3) . Y(3) . Z(3)
                                                                          SA402470
                                                                          SA402480
   DO 10 1=1.3
10 Z(I)=A*X(I)+B*Y(I)
                                                                          5A402490
                                                                          SA402500
   RETURN
                                                                          SA402510
   END
                                                                          SA402520
                                                                          SA402530
   FUNCTION DOT(X+Y)
                                                                          SA402540
   DIMENSION X(3) +Y(3)
   DOT=X(1)*Y(1)+X(2)*Y(2)+X(3)*Y(3)
                                                                          SA402550
                                                                          SA402560
   RETURN
                                                                          SA402570
   END
                                                                          SA402580
   SUBROUTINE PRNPUF (F.NO.N1)
                                                                          SA402590
                                                                          SA402600
   DIMENSION F(800), F1(33), IF(800)
                                                                          SA402610
   N3=N0#N1
                                                                          SA402620
   ICS=10
                                                                          SA402630
   ICZ=0
                                                                          SA402640
   11=0
                                                                          SA402650
   DO 20 K0=1.NO
                                                                          SA402660
   KS=1+(KO-1)*N1
                                                                          SA402670
   KE=KS+N1-1
   DO 10 1=1.N1
                                                                          SA402680
                                                                          SA402690
   I I = I I + 1
   F1(I)=F(II) #1.E5
                                                                          SA402700
10 IF(II) = INT(F(II) +1 . E+6)
                                                                          SA402710
                                                                          SA402720
   WRITE(6,01) KO
20 WRITE(6,02) (F1(I),I=1,N1)
                                                                          SA402730
   WRITE(7,03) ICS, ICZ, (IF(1), I=1, N3)
                                                                          SA402740
                                                                          SA402750
01 FORMAT(11HOCURVE NO. ,12)
02 FORMAT(1H ,8F8.1)
                                                                          SA402760
03 FORMAT(916)
                                                                          SA402770
                                                                          SA402780
   RETURN
                                                                          SA402790
                                                                          SA402800
   SUBROUTINE DATPLT(NO.N1.F.YDIST)
                                                                          SA402810
   DIMENSION F(1000),F1(33),F2(73),X(33),X1(73),C(1 ),P(1 ),CH(16)
                                                                          SA402820
   DATA PI/3.14159265358979/
                                                                          SA402830
   DATA CH/1H1,1H2,1H3,1H4,1H5,1H6,1H7,1H8,1H9,2H10,2H11,2H12,2H13,
                                                                          SA402840
                                                                          SA402850
  + 2H14,2H15,2H16/
                                                                          SA402860
   N3=NO#N1
   CALL YSCALE(N3.F.YDIST,YMAX,YMIN)
                                                                          SA402870
   DX=360./FLOAT(N1-1)
                                                                          SA402880
```

```
F1(1)=F1(2)=YMAX $ X(1)=0. $ X(2)=360.
CALL CALCM1(2,X.F1.0,0.,360.,YMIN.YMAX.6.,7.,TITLE.0.
                                                                           SA402890
SA402900
  + 20HCOLATITUDE (DEGREES),-20,30HNORMAL MAGNETIC FIELD (GAMMAS),
                                                                           SA402910
                                                                           SA402920
  + 30.0.181
                                                                           SA402930
   F1(2) = YMIN S X(1) = X(2) = 360.
   CALL CALCM1 (-2, X, F1, 0)
                                                                           SA402940
                                                                           SA402950
   F1(1)=F1(2)=0. $ X(1)=360. $ X(2)=0.
   IF(YMAX.GT.O.O.AND.YMIN.LT.O.O) CALL CALCM1(-2.X.F1.0)
                                                                           SA402960
                                                                           SA402970
   DO 10 I=1.N1
                                                                           SA402980
10 X(I)=DX#FLOAT(I-1)
                                                                           5A402990
   DO 20 I=1.73
20 X1(I)=5.*FLOAT(I-1)
                                                                           SA403000
                                                                           SA403010
   1J=0
   DO 50 I=1.NO
                                                                           SA403020
                                                                           SA403030
   DO 30 J=1.N1
                                                                           SA403040
   IJ=IJ+1
                                                                           SA403050
30 F1(J)=F(IJ)+1.E+5
                                                                           SA403060
   CALL FNCTON(F1,N1-1,C,CO,P,N2,DEV)
                                                                           SA403070
   DO 40 N=1.N2
                                                                          SA403080
   EN-N
                                                                           SA403090
   DO 40 J=1.73
   XX=X1(J)#PI/180.
                                                                           SA403100
                                                                          SA403110
   IF(N.EQ.1) F2(J)=C0
40 F2(J)=F2(J)+C(N)+SIN(EN+XX+P(N))
                                                                           SA403120
                                                                          54403130
   CALL CALCM1 (-73,X1,F2,0)
                                                                           SA403140
   DO 50 J=1,N1
                                                                           SA403150
   NC=1+1/10
   CALL SYMBL4(X(J)/60.+(F1(J)-YMIN)/YDIST+.08+CH(I)+0.+NC)
                                                                           SA403160
                                                                           SA403170
50 CONTINUE
                                                                          SA403180
   RETURN
                                                                          SA403190
   END
                                                                          SA403200
                                                                           5A403210
   SUBROUTINE FNCTON(F.NSCANS,C.CO.PHI.N2.DEV)
   DIMENSION F(1) . G(33) . C(1) . PHI (1)
                                                                          SA403220
                                                                          SA403230
   DATA PI/3.14159265358979/
                                                                           SA403240
   DX=2. #PI/FLOAT (NSCANS)
                                                                          SA403250
   NE=NSCANS/2+1
                                                                           SA403260
   C0=0.
                                                                           SA403270
   DO 10 J=1.NSCANS
                                                                          SA403280
10 CO=CO+F(J)/FLOAT(NSCANS)
                                                                           SA403290
   DO 30 N=1.NE
                                                                           SA403300
   EN=N
   51=0.
                                                                           SA403310
   C1=0.
                                                                          SA403320
                                                                          SA403330
   X = -DX
                                                                          SA403340
   DO 20 J=1.NSCANS
                                                                          SA403350
   X = X + DX
   S1=S1+(1./PI)#F(J)#SIN(EN#X)#DX
                                                                          SA403360
20 C1=C1+(1./PI)+F(J)+COS(EN+X)+DX
                                                                          SA403370
                                                                          SA403380
   C(N) = SQRT(S1**2+C1**2)
   IF((FLOAT(N)).EQ.(FLOAT(NSCANS)/2.)) C(N)=C(N)/2.
                                                                          SA403390
                                                                          SA403400
   PHI(N)=0.0
30 IF((S1**2+C1**2).NE.O.) PHI(N)=ATAN2(C1.S1)
                                                                          SA403410
   DO 50 N=1.NE
                                                                          SA403420
   EN=N
                                                                          SA403430
                                                                          SA403440
   X = -DX
                                                                          SA403450
   DEV1=0.
                                                                          SA403460
   DO 40 J=1.NSCANS
                                                                          SA403470
   X = X + DX
                                                                          SA403480
   IF(N.EQ.1) G(J)=CO
```

```
G(J)=G(J)+C(N)+SIN(EN+X+PHI(N))
                                                                        SA403490
40 1F(ABS(G(J)-F(J)).GT.DEV1) DEV1=ABS(G(J)-F(J))
                                                                        SA403500
   IF (N.EQ.1) DEV=DEV1
                                                                        SA403510
                                                                        SA403520
   IF(N.EQ.1) N2=1
   IF(DEV1.LT.DEV) N2=N
                                                                        SA403530
   IF (DEV1.LT.DEV) DEV=DEV1
                                                                        SA403540
                                                                        SA403550
50 CONTINUE
   RETURN
                                                                        SA403560
   END
                                                                        SA403570
                                                                        SA403580
   SUBROUTINE YSCALE (N.F.YD.YX.YM)
                                                                        SA403590
   DIMENSION F(800)
                                                                        SA403600
   PP=F(1)
                                                                        SA403610
   PN=PP
                                                                        SA403620
   DO 10 !=1.N
                                                                        SA403630
   IF(F(I).GT.PP) PP=F(I)
                                                                        SA403640
   IF(F(I).LT.PN) PN=F(I)
                                                                        SA403650
10 CONTINUE
                                                                        SA403660
   PP=PP#1.E+5
                                                                        SA403670
   PN=PN+1.E+5
                                                                        SA403680
   P=PP-PN
                                                                        SA403690
                                                                        SA403700
   SN=0.
                                                                        SA403710
   IF(PP.GT.O.) SN=1.
   IF (YD.NE.O.) GO TO 50
                                                                        5A403720
                                                                        SA403730
   DO 20 I=1,21
   FA=(1.E-9)*(10.**I)
                                                                        SA403740
   FA1=FA+.1
                                                                        SA403750
   IF(P/FA.GE.1.) GO TO 20
                                                                        SA403760
                                                                        SA403770
   GO TO 30
20 CONTINUE
                                                                        SA403780
                                                                        SA403790
30 YD=5.*FA1
   YX=FLOAT(INT(PP/YD+SN)) #YD
                                                                        SA403800
   YM=YX-7. #YD
                                                                        SA403810
                                                                        SA403820
   CN=4.
   DO 40 I=1.3
                                                                        SA403830
   CN=CN+.5
                                                                        SA403840
   YD1=CN#FA1
                                                                        SA403850
   YX1=FLOAT([NT(PP/YD1+SN)) #YD1
                                                                        SA403860
   YM1=YX1-7.*YD1
                                                                        SA403870
   IF((7.*YD1-P).LT.0.0.OR.YX1.LT.PP.OR.YM1.GT.PN) RETURN
                                                                        SA403880
   YD=YD1
                                                                        SA403890
   YX=YX1
                                                                        SA403900
   YM=YM1
                                                                        SA403910
40 CONTINUE
                                                                        SA403920
50 YX=FLOAT(INT(PP/YD+SN))*YD
                                                                        SA403930
                                                                        SA403940
   YM=YX-7.#YD
   RETURN
                                                                        SA403950
                                                                        SA403960
   END
```

APPE"DIK H

SAIPLE PROPLETS FOR SA4024

I. PROBLEM EXECUTED ON INTERCON (THEY-SHARING SYSTEM)

NOL INTERCOM TYPE "LOGIN." LOGIN.

TYPE USERNAME/PASSWORD/TTY NO. (OUTSIDE NOL TTY=88)
024533LACK/

09/10/73 15.12.25. BD/42/35 C- <u>SFTUF.FØRTRAN</u>

ON AT 15.12.38. 09/10/73

**FFRTRAN

**NEW OR OLD FILE- ATTACH(BN4024, BN4024)

15.12.56.ATTACH (BN4024, BN4024)

**RFADY.

REVIND(BN4024) *C@PYBR(BN4024, FIL, 9) *RETURN(BN4024)

**READY.

FIL.

6 25 1 0 96.00 1.000 0.200 25.00 (1H.7E10.4)

CNAM

NO = 6,

```
= 25,
N 1
     = 1,
NH
IF
     = 0,
     = 0.96E+02,
R1
FG
   = 0.1E+01.
FA = 0.2E+00
FD
     = 0.25E+02
     = -0.0,
FY
SEND
F9 = (1H , 7E10.4)
1
      3
```

```
HOSITION VECTOR AND COEFFICIENTS FOR NN & NM = 1 3 ARE -- 39.00 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00
```

21.0000 36.3730 0.0000 (. -.150CF+C5 .2598F+O5 -21.00 -36.373 0.000 +.0000F+00-.1500E+O5 -.2598F+O5

21.0000-36.3730 0.0000 0. -.1500E+05 - .2598E+05 CURVE NO. -504.3 -475.6 -381.5 -123.3 438 • 5 1273.8 1749.2 1259.7 431.3 -125.8 -382.2 -476.4 -502.8 -499.8 -476.5 -436.6 -386.3 -341.0 -322.6 -339.4 -386.6 -436.0 -476.8 -499.1 -503.8 CURVE NO. 2 281.0 -502.8 - 481 - 3 -414.6 -275.5 -20.8 427.2 280.3 -26.8 -272-8 -415.6 -480.7 -504.2 -497.6 -451.0 -328.7 -83.B 407.3 239.5 -80.6 -329.0 -450.5 -497.1 235.4 -503.8 CURVE NO. 3 -502.5 -487.8 -454.5 -406.6 -348.0 -296.8 -278.0 -297.1 -406.6 -455.4 -488.3 -503.1 -492.7 -419.0 -190.5 -348.4 405.3 1389.2 2019.5 1395.2 393.6 -193.1 -419.7 -491.0 -504.3 CURVE NO. 4 -503.5 -491.6 -442.4 -319.4 -81.9 238 • 1 399.1 233.5 -490.6 -77.1 -320.2 -442.6 -492.0 -504.1 -440.9 -315.1 -74.8 253.5 420.1 253.7 -74.5 -318.2 -441.7 -491.1 -503.7 CURVE NO. 5 -492.5 -502.5 -420.0 -188.4 397.7 1389.0 2018.3 1392.8 390.7 -192.5 -419.2 -491.1 -503.6 -488.4 -456.9 -405.6 -347.5 -298.5 -277.5 -298.0 -347.8 -406.3 -454.5 -488.6 -503.4 CURVE NO. 6 -502.4 -497.0 -452.0 -327.9 -86.4 229.7 401.3 237.1 -82.9 -329.9 -448.4 -497.0 -503.7 -481.8 -415.6 -274.3 -22.6 286.3 433.2 279.6 -20.7 -271.3 -414.7 -481.6 -503.6

0.00000000000

0 0 0 0

15.20.24.ST0P +*READY. L0G0UT.

CP TIME 4.233
PP TIME 56.828
CONNECT TIME 0 HR 8 MIN 11 SEC
TOTAL COST OF SESSION = \$ 2.60
09/10/73 LOGGED OUT AT 15.20.36.<

Notes:

- 1. The file BN4024 is the binary version of SA4024. It consists of 12 binary records (subprograms). The last three are plotting routines and are not used when executing problems on INTERCOM.
- 2. The information typed in by the user has been underlined.

APPENDIX H (CONT.) II. LISTING OF DATO24

```
0 -5043 -4755 -3815 -1233 4384 12737 17492
   10
      4313 -1257 -3821 -4763 -5027 -4998 -4765 -4365
-3863 -3410 -3226 -3394 -3865 -4359 -4767 -4990 -5037
-5028 -4812 -4146 -2754 -208 2810 4272
                                         2802
                                                -267
-2727 -4155 -4806 -5041 -4976 -4510 -3287
                                          -838 2354
 4072 2395 -806 -3289 -4504 -4971 -5037 -5025 -4877
-4544 -4066 -3480 -2968 -2779 -2971 -3484 -4066 -4554
-4883 -5030 -4926 -4190 -1905 4053 13892 20194 13952
 3935 -1930 -4196 -4910 -5042 -5035 -4916 -4423 -3194
                 2334
-819 2381
            3990
                       -770 -3201 -4425 -4920 -5041
                 -748 2534 4201
-4906 -4408 -3151
                                   2537
                                          -745 -3181
-4416 -4911 -5037 -5024 -4924 -4199 -1884 3977 13889
           3907 -1925 -4192 -4911 -5036 -4884 -4568
20183 13927
-4056 -3474 -2985 -2775 -2979 -3477 -4063 -4545 -4886
-5034 -5024 -4970 -4520 -3278 -863 2297 4012 2371
-829 -3299 -4484 -4970 -5036 -4817 -4156 -2743
                                                -225
2863 4332 2796 -207 -2712 -4146 -4815 -5035
```

Notes:

- 1. The data is stored in DATO24 in a way that allows the file to be read in a (9F6.1) format.
- 2. The first two data points on the first line are values representing the calibration and zero readings, CS and CZ. The value of the calibration signal CV should be set to 1.0 when using data generated from SA4024.

APPENDIX H (CONT.) III. PROBLEM SUBMITTED TO BATCH

NØL INTERCOM
TYPE "LØGIN."
LØGIN(S)
024533LACK/

09/11/73 09.43.58. BC/42/34 C- SETUF-GENERAL

**RFADY.

1 I ECC 4ST, P1, T200, CM060000.55302435, 024, LACKEY. 2ATTACH(ABC, NOLBIN) 3COFYN(O, DEF, ABC) 4RETURN(ABC) 5ATTACH(BN 4024, BN 4024) 6 REWIND (BN 4024) 7 CØPYBF (BN 4024, CBA) 8 RETURN(BN 4024) 9LØAD(CBA) 1 ODEF • 11*WFØR 12RFWIND(ABC) 13GOULD1, 14, ABC 1 4*WFOR 6100 6 1 96.00 1.000 0.200 25.00 6110 0.000 6120 (1H ,7E10.4) 6130 1 6140 39 • 00 0.000 0.000 6150 +.0000E+00+.3100E+05 6160 +.COOOE+00 6170 -21.00 36.373 0.000 6160 +.000DF+00-.1500F+05

Tape prepared beforehand in LOCAL mode

```
6190 +.2598E+05
                         0.000
       -21.00 -36.373
6200
6210 +.0000E+00-.1500E+05
6220 -.2598E+05
6230
                                                                Tape prepared
         6
             25
        96.00
                0.000
                         0.000
                                  0.000
                                          0.000
                                                                beforehand in
6240
                                                                LOCAL Mode
        (1H , 7E10.4)
6250
6260
6270
        0.000
                0.000
                         0.000
6280 +.0000E+00+.1000E+04
6290
      +.0000E+00
6300
             25
6310
        96.00
                0.000
                         0.000
                                  0.000
                                          0.000
6320
        (1H , 7E10.4)
6330
         2
6340
        0.000
                0.000
                         0.000
6350 -.9472E+07+.0000E+00-.2241E+06
6360 +.0000E+00+.0000E+00
6370
         6
6380
        96.00
                0.000
                         0.000
                                  0.000
                                          0.000
6390
        (1H ,7E10.4)
6 400
         3
6410
        0.000
                0.000
                         0.000
6420 +.0000E+00+.6837E+08+.0000E+00+.2341E+10
6 430
     +.0000E+00+.0000E+00+.0000E+00
6 440
             25
6 450
        96.00
                0.000
                         0.000
                                  0.000
                                          0.000
        (1H , 7E10.4)
6460
6 470
         4
        0.000
                0.000
6480
                         0.000
6 490 + · 15 45E+12+ · 0000E+00+ · 1406E+11+ · 0000E+00- · 1860E+11
6500 +.0000E+00+.0000E+00+.0000E+00+.0000E+00
6510
         6
             25
6520
        96.00
                0.000
                         0.000
                                 0.000
                                          0.000
6530
        (1H ,7E10.4)
6540
        5
              1
6550
        0.000
                0.000
                        0.000
6560 +.0000E+00-.2180E+13+.0000E+00-.2812E+14+.0000E+00-.3158E+13
6570 +.0000E+00+.0000E+00+.0000E+00+.0000E+00+.0000E+00
6580
             25
        6
       96.00
                0.000
                         0.000
                                 0.000
                                          0.000
6590
6600
        (1H ,7E10.4)
6610
        6
        0.000
                0.000
6620
                        0.000
6630 -.2109E+16+.0000E+00-.3228E+15+.0000E+00+.3536E+15+.0000E+00+.4533E
+16
6640 +.0000E+00+.0000E+00+.0000E+00+.0000E+00+.0000E+00+.0000E+00
5650
        6
             25
6660
       96.00
                0.000
                        0.000
                                 0.000
                                          0.000
6670
        (1H ,7F10.4)
6680
        7
              1
        0.000
                0.000
                        0.000
6690
6700 +.0000E+00+.4320E+17+.0000E+00+.3541E+18+.0000E+00+.4962E+17+.0000E
+00
```

```
6710 - . 6764E+17
6720 +.0000E+00+.0000E+00+.0000E+00+.0000E+00+.0000E+00+.0000E
+00
6730
            25
        6
                  1
       96.00
               0.000
                       0.000
6740
                               0.000
                                        0.000
6750
       (1H ,7E10.4)
6760
6770
       0.000
               0.000
                       0.000
6780 +.2699E+20+.0000E+00+.5698E+19+.0000E+00-.5975E+19+.0000E+00-.4517E
+20
6790 +.0000E+00-.9102E+19
6800 +.0000E+00+.0000E+00+.0000E+00+.0000E+00+.0000E+00+.0000F+00+.0000E
+00
6810 +.0000E+00
                  8
6820
        6
            25
       96.00 0.000
6830
                       0.000
                               0.000
                                        0.000
       (1H , 7F10.4)
6840
                                                             Tape prepared
6850
        1
               0.000
       0.000
                       0.000
                                                             beforehand in
6860
6870 +.0000E+00+.1000E+04
                                                             LOCAL mode
6880 +.0000E+00
6890
        2
               0.000
6900
       0.000
                       0.000
6910 -.9472E+07+.0000E+00-.2241E+06
6920 +.0000E+00+.0000E+00
6930
        3
6940
       0.000
               0.000
                       0.000
6950 +.0000E+00+.6837E+08+.0000E+00+.2341E+10
6960 +.0000E+00+.0000E+00+.0000E+00
6970
        4
       0.000
               0.000
                       0.000
6980
6990 +.1545E+12+.0000E+00+.1406E+11+.0000E+00-.1860E+11
7000 +.0000E+00+.0000E+00+.0000E+00+.0000E+00
7010
7020
       0.000
               0.000
                       0.000
7030 +.0000E+00-.2180E+13+.0000E+00-.2812E+14+.0000E+00-.3158E+13
7040 +.0000E+00+.0000E+00+.0000E+00+.0000E+00+.0000E+00
7050
        6
       0.000
               0.000
7060
                       0.000
7070 -.2109E+16+.0000E+00-.3228E+15+.0000E+00+.3536E+15+.0000E+00+.4533E
+16
7080 +.0000E+00+.0000E+00+.0000E+00+.0000E+00+.0000E+00+.0000E+00
7090
        7
       0.000
               0.000
                       0.000
7100
7110 +.0000E+00+.4320E+17+.0000E+00+.3541E+18+.0000E+00+.4962E+17+.0000E
+00
7120 - . 6764E+17
7130 +.0000E+00+.0000E+00+.0000E+00+.0000E+00+.0000E+00+.0000E
+00
7140
        8
       0.000
               0.000
7150
                       0.000
7160 +.2699E+20+.0000E+00+.5698E+19+.0000E+00-.5975E+19+.0000E+00-.4517E
+20
```

```
7170 +.0000E+00-.9102E+19
7180 +.0000E+00+.0000E+00+.0000E+00+.0000E+00+.0000E
+00
7190 +.0000E+00
7200 0 0 0 0
TAPE(ØFF) *SAVE*PURGE(IECCO24) *BATCH.*QUEUES.
```

**SAVED IECCO24
09.56.18.PURGE(IECCO24)
TYPE FILE NAME-IECCO24

TYPE DISPOSITION-INPUT

TYPE FILE NAME-END

QUEUES 09.57.13. I=w18, 0= 2, P= 0, C= 4.
INPUT = 18
IECC43L-1 CABRE3J-4 GFJLK3K-5 GRID73I-5 GRIDN3H-5 CABRE3A-4
CCBCB3F-5 CABRE3E-4 CABRE3G-4 CABRE3D-4 EAADW3B-5 HHJC027-3
CABRE25-4 IECC426-1 CABAP3C-5 HHJ1J22-2 CABRE28-4 CESEQO2-3
0 UTPUT= 2
AJFLZ1Z-0 HHJDP19-0
PUNCH = N0NE
C0MM0N= 4
GE0PP -0 KEEP7 -0 SSSSSU-0 SSSSST-0
C0NTR0L PTS.
DAJR124-5 DBA1820-1
09.57.13.ST0P
**READY.
L0G0UT.

CF TIME 1.674
PP TIME 82.029
CØNNECT TIME 0 HR 14 MIN 9 SEC
TØTAL CØST ØF SESSIØN = \$ 3.58
09/11/73 LØGGED ØUT AT 09.58.07.<

Note:

1. The information typed in by the user has been underlined.

APPENDIX I

LISTING OF SA5024

	PROGRAM DIPSTD(INPUT=65,OUTPUT=65,TAPE5=INPUT,TAPE6=OUTPUT,TAPE99)	SA500018 SA500020
c	SPHERICAL HARMONIC PROGRAM	SA500030 SA500040 SA500050
c	THIS PROGRAM GENERATES AND ANALYZES DATA REPRESENTING THE NORMAL COMPONENT OF THE MAGNETIC FIELD FROM A SATELLITE. THE DATA IS ENTERED	SA500060 SA500070
c	IN THE FOLLOWING ORDER	SA500090 SA500100
C	NO - THE NUMBER OF GREAT CIRCLES OF DATA. (NO IS USUALLY EVEN, E.G., NO=(N1-1)/2. THE PROGRAM STOPS IF NO=0.)	SA500110 SA500120 SA500130
c c	N1 - THE NUMBER OF DATA POINTS PER GREAT CIRCLE. (N1 IS ALWAYS ODD. THE FIRST DATA POINT IS THE SAME AS THE LAST FOR EACH GREAT CIR- LE.)	SA500140
C	NH1 - THE TOTAL NUMBER OF DIFFERENT HARMONICS (DEGREES) OF MULTIPOLE MAGNETS TO BE CONSIDERED.	SA500170 SA500180 SA500190
c	NH2 - THE HARMONIC NUMBER (DEGREE) REPRESENTING THE HIGHEST DEGREE SPHERICAL HARMONIC TERM TO BE COMPUTED FROM THE DATA. (NH2=1	SA500200 SA500210 SA500220
c	FOR DIPOLES, 2 FOR QUADRUPOLES, ETC.) IP1 - DETERMINES WHETHER OR NOT THE MAGNETIC DATA IS TO BE PLOTTED.	SA500230 SA500240 SA500250
c	(IP1=0 MEANS THAT THE DATA WILL NOT BE PLOTTED.) IP2 - DETERMINES WHETHER OR NOT THE MAGNETIC DATA IS TO BE PRINTED.	SA500260 SA500270 SA500280
c	(IP2=0 MEANS THAT THE DATA WILL NOT BE PRINTED.) IW - DETERMINES THE TYPE OF INTEGRATING SCHEME TO BE USED. (IW=0	SA500290 SA500300 SA500310
c	MEANS THAT THE EXACT, ALGEBRAIC SCHEME IS TO BE USED.)	SA500320 SA500330
c	R1 - THE RADIUS OF THE MEASUREMENT SPHERE IN INCHES. EG - THE ERROR (IN GAMMAS) TO BE RANDOMLY INSERTED INTO THE DATA TO	SA500340 SA500350 SA500360
c	REPRESENT INSTRUMENTATION INACCURACIES. EA - THE ERROR (IN DEGREES) TO BE RANDOMLY INSERTED INTO THE DATA TO	SA500370 SA500380 SA500380
c	REPRESENT MEASUREMENT POSITION ERRORS.	SA500400 SA500410
C	ED - THE CONSTANT ERROR (IN GAMMAS) TO BE INSERTED INTO THE DATA. (THIS WILL BE ANALYZED AS MONOPOLE MOMENT.)	SA500420 SA500430 SA500440
c	PY - THE SCALE FACTOR (GAMMAS/INCH) FOR THE Y-AXIS IF THE DATA IS TO BE PLOTTED. (IF PY=0.0 A FACTOR WILL BE COMPUTED FROM THE DATA.)	
C	F9 - THE FORMAT FOR READING AND PRINTING THE SPHERICAL COEFFICIENTS	\$A500480

```
C
       A(I) AND B(I).
                                                                        SA500490
                                                                        SA500500
                                                                        SA500510
C
   DO ** NI=1.NH1
                                                                        SA500520
                                                                        SA500530
C
     NN - THE HARMONIC NUMBER (DEGREE) OF THE MULTIPOLE DATA BEING READ $400540
          IN. (NN=1 FOR DIPOLES, 2 FOR QUADRUPOLES, ETC.)
C
                                                                        SA500560
     NM - THE NUMBER OF MULTIPOLES WITH HARMONIC NUMBER NN.
C
                                                                        SA500570
                                                                        SA500580
                                                                        SA500590
     DO ## NJ=1.NM
C
                                                                        SA500600
                                                                        SA500610
       P - THE POSITION VECTOR (IN INCHES) OF THE MULTIPOLE IN RECTANG- $4500620
           ULAR COORDINATES.
                                                                        SA500630
                                                                        SA500640
       A(I) - THE SPHERICAL COEFFICIENTS FOR THE MULTIPOLE OF DEGREE NN SA500650
              WHERE I=1,2,--,NN+1. (I-1 IS THE ORDER OF THE ITH COEFF.) SA500660
C
                                                                        SA500670
      B(1) - THE SPHERICAL COEFFICIENTS FOR THE MULTIPOLE OF DEGREE NN SA500680
C
              WHERE I=1,2,--,NN (I IS THE ORDER OF THE ITH COEFF.)
                                                                        SA500690
C
                                                                        SA500700
C
       **NOTE** THE COEFFICIENTS FOR A DIPOLE OF MOMENT (DX.DY.DZ) ARE
                                                                       SA500710
                AS FOLLOWS --
                                                                        SA500720
                             A(1)=DZ, A(2)=DX, AND B(1)=DY.
                                                                        SA500730
                                                                        SA500740
  ** CONTINUE
                                                                        SA500750
                                                                        SA500760
                                                                        SA500770
  DIMENSION F(1000) +P(3) +PV(200) +A(11) +B(10) +R(3) +DM(3) +F1(3) +D(3) SA500790
     ++A1(33)+A2(1000)+F9(7)
                                                                        SA500800
     NAMELIST/NAM/NO,N1,NH1,NH2,IP1,IP2,IW,R1,EG,EA,ED,PY
                                                                        SA500810
                                                                        SA500820
     DATA PI/3.14159265358979/
     IPT=0
                                                                        SA500830
  10 READ(5.01) NC.N1.NH1.NH2.IP1.IP2.IW
                                                                        SA500840
     IF(IPT.EQ.O.AND.IP1.NE.O) CALL CALCM1(0.10H024 LACKEY.-10.)
                                                                        SA500850
     IF(NO.EQ.0) GO TO 110
                                                                        SA500860
     IF(IP1.NE.O) IPT=1
                                                                        SA500870
     READ(5,02) R1,EG,EA,ED,PY
                                                                        SA500880
     READ(5.04) F9
                                                                        SA500890
     WRITE(6.NAM)
                                                                        SA500900
                                                                        SA500910
     WRITE(6,14) F9
     D1=PI/FLOAT(NO)
                                                                        SA500920
     D2=2. #PI/FLOAT(N1-1)
                                                                        SA500930
     IZ=1
                                                                        SA500940
                                                                        SA500950
     DO 50 NI=1.NH1
                                                                        SA500960
     READ(5.01) NN.NM
                                                                        SA500970
     WRITE(6,03) NN,NM
     NN1 = NN + 1
                                                                        SA500980
     DO 40 NJ=1+NM
                                                                        SA500990
                                                                        SA501000
     READ(5.02) P
     READ(5.F9) (A(I).I=1.NN1)
                                                                        SA501010
     READ(5,F9) (B(I),I=1,NN)
                                                                       SA501020
                                                                        SA501030
     WRITE(6.02) P
     WRITE(6,F9) (A(I),I=1,NN1)
                                                                        SA501040
                                                                       SA501050
     WRITE(6,F9) (B(I),I=1,NN)
     IF(NJ.EQ.1.AND.IZ.EQ.1) CALL SUM(0..P.O..P.DM)
                                                                        SA501060
                                                                       SA501070
     IF(NN.NE.1) GO TO 20
     DM(1) = DM(1) + A(2)
                                                                        SA501080
```

```
DM(2) = DM(2) + B(1)
                                                                           SA501090
                                                                           SA501100
    DM(3) = DM(3) + A(1)
 20 DO 30 K=1.NO
                                                                           SA501110
    IF(IZ.EQ.1) A1(K)=FLOAT(K-1)*D1+(RANF(1.1)-.5)*2.*EA*PI/180.
                                                                           SA501120
                                                                           SA501130
    S1=SIN(A1(K))
    C1=COS(A1(K))
                                                                           SA501140
                                                                           SA501150
    DO 30 L=1.N1
    KL = L + (K-1) *N1
                                                                           SA501160
    IF(IZ.EQ.1) A2(KL)=FLOAT(L-1)+D2+(RANF(1.1)-.5)+2.+EA+PI/180.
                                                                           SA501170
                                                                           SA501180
    S2=SIN(A2(KL))
                                                                           SA501190
    C2=COS(A2(KL))
    IF(IZ.EQ.1) F(KL)=0.
                                                                           SA501200
                                                                           SA501210
    R(1)=R1*C1*S2
    R(2)=R1*S1*S2
                                                                           SA501220
                                                                           SA501230
    R(3)=R1*C2
                                                                           SA501240
    CALL AMPFLD(R.P.NN,A.B.F1)
                                                                           SA501250
 30 F(KL)=F(KL)+DOT(F1+R)/SQRT(DOT(R+R))
                                                                           SA501260
    1 Z = 0
                                                                           SA501270
 40 CONTINUE
                                                                           SA501280
 50 CONTINUE
                                                                           SA501290
    N3=N0+N1
                                                                          SA501300
    DO 60 I=1.N3
                                                                           SA501310
 60 F(1)=F(1)+ED+1.E-5+(RANF(1.1)-.5)+2.E-5+EG
    IF(IW.EQ.O) CALL WGT1(NO.N1.PV)
                                                                           SA501320
                                                                           SA501330
    IF(IW.NE.O) CALL WGT3(NO.N1.PV)
    CALL AMPMNT(NO,N1,O,R1,F,PV,A,B)
                                                                           SA501340
                                                                          SA501350
    WRITE(6,05) A(1)
    IF(IP2.NE.O) CALL PRINTF(F.NO.N1)
                                                                          SA501360
    IF(IP1.NE.O) CALL DATPLT(NO.N1.F.PY)
                                                                           SA501370
    DO 100 NI=1.NH2
                                                                          SA501380
                                                                           SA501390
    CALL AMPMNT(NO.NI.NI.RI.F.PV.A.B)
    IF(NI.GT.1) GO TO 80
                                                                          SA501400
                                                                          SA501410
    D(1)=A(2)
                                                                          SA501420
    D(2)=B(1)
                                                                          SA501430
    D(3) = A(1)
                                                                          SA501440
    CALL SPCOOR(D,R)
    CALL SPCOOR (DM +F1)
                                                                          SA501450
                                                                          SA501460
    WRITE(6,06) DM,F1
                                                                          SA501470
    WRITE(6,07) D.R
                                                                          SA501480
    IF(F1(1).EQ.O.) WRITE(6.08)
                                                                          SA501490
    IF(F1(1).EQ.O.) GO TO 90
                                                                          SA501500
    DO 70 I=1.3
 70 R(I) = (DM(I) - D(I)) + 100 \cdot /F1(1)
                                                                          SA501510
                                                                          SA501520
    WRITE(6,09) R
                                                                          SA501530
    GO TO 90
                                                                          SA501540
 80 IF(NI.GT.2) GO TO 90
                                                                          SA501550
    53=SQRT(3.)
    Q11=S3#A(3)-A(1)
                                                                          SA501560
                                                                          SA501570
    Q22=-S3*A(3)-A(1)
                                                                          SA501580
    Q33=-Q11-Q22
    Q12=S3*B(2)
                                                                          SA501590
                                                                          SA501600
    Q13=53#A(2)
    Q23=53*B(1)
                                                                          SA501610
    WRITE(6.11) Q11.Q22.Q33.Q12.Q13.Q23
                                                                          SA501620
                                                                          SA501630
90 WRITE(6.12) NI
                                                                          SA501640
    NI1=NI+1
    WRITE(6,13) (A(I),I=1,NI1)
                                                                          SA501650
    WRITE(6,13) (B(I),I=1,NI)
                                                                          SA501660
100 CONTINUE
                                                                          SA501670
                                                                          SA501680
    GO TO 10
```

```
110 IF(IPT.NE.0) CALL CALCM1(0.10H024 LACKEY.+10.)
                                                                         SA501690
    STOP
                                                                         SA501700
 01 FORMAT(1415)
                                                                         SA501710
02 FORMAT (9F8.4)
                                                                         SA501720
 03 FORMAT(48H1POSITION VECTOR AND COEFFICIENTS FOR NN ( NM = +213+
                                                                         SA501730
   + 7H ARE --)
                                                                         SA501740
                                                                         SA501750
 04 FORMAT (7A10)
                                                                         SA501760
05 FORMAT(26HOTHE MONOPOLE MOMENT IS -- .F20.6//)
06 FORMAT(20H1ACTUAL MOMENT IS --/3F20.6/3F20.6)
                                                                         SA501770
07 FORMAT(24H1CALCULATED MOMENT IS --/3F20.6/3F20.6)
                                                                         SA501780
08 FORMAT (42HOPERCENT ERROR CANNOT BE COMPUTED - DM = 0)
                                                                         SA501790
09 FORMAT(20HOPERCENT ERROR IS --/3E20.12)
                                                                         SA501800
 11 FORMAT(54HOTHE QUADRUPOLE MOMENTS Q11,Q22,Q33,Q12,Q13,Q23 ARE --/ SA501810
                                                                         SA501820
   + (3E20.12))
12 FORMAT(27HOTHE A ( B COEFFS. FOR THE , 12, 16HTH HARMONIC ARE9)
                                                                         5A501830
13 FORMAT(1H ,5E20.12)
                                                                         SA501840
14 FORMAT(6H0F9 = +7A10)
                                                                         SA501850
                                                                         SA501860
                                                                         SA501870
    SUBROUTINE AMPMNT(NO.N1.N.R1.F.P.A.B)
                                                                         SA501880
   DIMENSION F(1000) ,P(200) ,PN(10,200) ,A(11) ,B(10)
                                                                         SA501890
   DATA PI/3.14159265358979323846/
                                                                         SA501900
                                                                         SA501910
   CALL POLVAL(N1+N+PN)
                                                                         SA501920
    KL=0
                                                                         SA501930
   N2 = (N1 + 1)/2
   D1=PI/FLOAT(NO)
                                                                         SA501940
                                                                         SA501950
    D2=2.#PI/FLOAT(N1-1)
                                                                         SA501960
   DO 10 K=1.NO
                                                                         SA501970
    A1=D1#FLOAT(K-1)
                                                                         SA501980
   LP=+1
   LI=0
                                                                         SA501990
                                                                         SA502000
    DO 10 L=1.N1
                                                                         SA502010
    KL=KL+1
                                                                         SA502020
    IF(L.GT.N2) LP=-1
                                                                         SA502030
    LI=LI+LP
                                                                         SA502040
    A2=A1+FLOAT(1-LP)*PI/2.
                                                                         SA502050
    F1=F(KL)
    A2N=FLOAT(2#N+1)
                                                                         SA502060
                                                                         SA502070
    AIN=FLOAT(N+1)
                                                                         SA502080
    AR=(R1#2.54)##(N+2)
                                                                         SA502090
    NN = N + 1
                                                                         SA502100
    DO 10 MM=1.NN
                                                                         SA502110
    M = MM - 1
                                                                         SA502120
    AM=FLOAT(M)
                                                                         SA502130
    IF(KL.EQ.1) A(MM)=0.
    IF(KL.EQ.1.AND.M.GT.O) B(M)=0.
                                                                         SA502140
    PNM1=PN(MM.LI) *COS(AM*A2)
                                                                         SA502150
                                                                         SA502160
    PNM2=PN(MM,LI) *SIN(AM*A2)
                                                                         SA502170
    AC = (A2N + AR/A1N) + F1 + P(LI)
                                                                         SA502180
    A(MM) = A(MM) + AC*PNM1
                                                                         SA502190
    IF(M.GT.O) B(M)=B(M)+AC*PNM2
                                                                         SA502200
 10 CONTINUE
   RETURN
                                                                         SA502210
                                                                         SA502220
   END
                                                                         SA502230
                                                                         SA502240
    SUBROUTINE WGT1 (NO+N1+P)
                                                                         SA502250
   DIMENSION D(50) .P(200)
                                                                         SA502260
   N4 = (N1 + 1)/4
                                                                         SA302270
    AN=FLOAT(NO)
   CALL WGT2(N1.D)
                                                                         SA502280
```

```
DO 10 J1=1.N4
                                                                         SA502290
   J3=N1/2+2-J1
                                                                         SA502300
   DJ=D(J1)/(4.*AN)
                                                                         SA502310
                                                                         SA502320
   P(J1)=DJ
10 P(J3)=DJ
                                                                         SA502330
   IF(INT(FLOAT(N1-1)/4.+.1)#4.NE.(N1-1)) GO TO 20
                                                                         SA502340
                                                                         SA502350
   J1 = N4 + 1
   P(J1) = D(J1) / (4.7AN)
                                                                         SA502360
20 N4=(N1+1)/2
                                                                         SA502370
   P(N4)=P(N4)#2.
                                                                         SA502380
                                                                         SA502390
   RETURN
                                                                         SA502400
   END
                                                                         SA502410
   SUBROUTINE WGT2(N.D)
                                                                         SA502420
   DIMENSION A(50,50),D(50),C(50)
                                                                         SA502430
                                                                         SA502440
   DOUBLE PRECISION A.C.PI.AN
   DATA PI/3.141592653589793238462643D0/
                                                                         SA502450
   N3=(N+1)/4
                                                                         SA502460
                                                                         SA502470
   N4=N3+1
                                                                         SA502480
   DO 10 1=2.N4
   C(1)=1./FLOAT(2*1-1)
                                                                         SA502490
                                                                         SA502500
   A(I + 1) = 1
                                                                         SA502510
   A(I.N4)=0.
                                                                         SA502520
   DO 10 J=2.N3
   AN=2. *PI *DBLE(FLOAT(J-1)) /DBLE(FLOAT(N-1))
                                                                         SA502530
                                                                         SA502540
10 A(I.J)=(DCOS(AN))**(2*I-2)
                                                                         SA502550
   C(1) = 2.
                                                                         SA502560
   A(1+N4)=1.
   DO 20 J=1.N3
                                                                         SA502570
20 A(1,J)=2.
                                                                         SA502580
                                                                         SA502590
   N3=N4
   IF (INT (FLOAT (N-1) /4.+.1) #4.NE. (N-1) N3=N3-1
                                                                        SA502600
   CALL GAUSEL(A,C,N3,N3,1)
                                                                         SA502610
                                                                         SA502620
   DO 30 I=1.N3
                                                                         SA502630
30 D(1)=C(1)
   RETURN
                                                                         SA502640
   END
                                                                        SA502650
                                                                        SA502660
   SUBROUTINE WGT3(NO.N1.P)
                                                                         SA502670
                                                                        SA502680
   DIMENSION P(200)
   DATA PI/3.14159265358979323846/
                                                                         SA502690
   D2=2.*PI/FLOAT(N1-1)
                                                                        SA502700
                                                                        SA502710
   E1=(SIN(D2/4.))##2
                                                                         SA502720
   E2=SIN(D2/2.)
   P(1)=E1/(2.*FLOAT(NO))
                                                                        SA502730
                                                                        SA502740
   N2=(N1+1)/2
   P(N2)=P(1)#2.
                                                                        SA502750
   IF(N1.LE.3) RETURN
                                                                        SA502760
                                                                        SA502770
   N3=N2-1
   DO 10 L=2.N3
                                                                        SA502780
   S2=SIN(D2*FLOAT(L-1))
                                                                        SA502790
   P(L) = ABS(S2*E2)/(2.*FLOAT(NO))
                                                                        SA502800
10 CONTINUE
                                                                        SA502810
   RETURN
                                                                        SA502820
   END
                                                                        SA502830
                                                                        SA502840
   SUBROUTINE GAUSEL (A,C,M,N,IT)
                                                                        SA502850
   DIMENSION A(50,50),C(50),IB(50)
                                                                        SA502860
   DOUBLE PRECISION A.C.D
                                                                        SA502870
   WRITE(6.03)
                                                                        SA502880
```

C

```
$A502890
$A502900
  DO 20 I=1.M
20 WRITE(6.04) (A(I.J).J=1.N).C(I)
                                                                            SA502910
     DO 70 I=1.N
                                                                            SA502920
   70 IB(I)=I
                                                                            SA502930
     DO 60 I=1.M
                                                                            SA502940
     IF (IT.NE.O.AND.M.NE.N) GO TO 35
                                                                            SA502950
     D=0.
                                                                            SA502960
     JJ=0
                                                                            SA502970
     DO 10 J=I.N
     IF(DABS(A(I.J)).LE.D) GO TO 10
                                                                            SA502980
                                                                            SA502990
      JJ=J
                                                                            SA503000
     D=DABS(A(I+J))
                                                                            SA503010
  10 CONTINUE
                                                                            SA503020
      IF(JJ.EQ.1) GO TO 35
      IF(JJ.NE.0) GO TO 140
                                                                            SA503030
                                                                            SA503040
      WRITE(6:01) I
                                                                            SA503050
     GO TO 110
                                                                            SA503060
  140 DO 160 J=1.M
                                                                            SA503070
     D=A(J,JJ)
                                                                            SA503080
      A(J.JJ) = A(J.1)
                                                                            SA503090
  160 A(J,I)=D
                                                                            SA503100
      ID=IB(JJ)
                                                                            SA503110
      18(JJ)=18(1)
                                                                            SA503120
      1B(1)=1D
                                                                            SA503130
  35 D=A(I+I)
                                                                            SA503140
     DO 30 J=I+N
                                                                            SA503150
   30 A(I,J)=A(I,J)/D
                                                                            SA503160
     C(1)=C(1)/D
                                                                            SA503170
     DO 50 J=1.M
                                                                            SA503180
      IF(J.EQ.I) GO TO 50
                                                                            SA503190
     D=A(J+1)
                                                                            SA503200
      IF(D.EQ.O.) GO TO 50
                                                                            SA503210
     DO 40 K=I+N
                                                                            SA503220
   40 A(J,K)=A(J,K)-D*A(I,K)
                                                                            SA503230
      C(J)=C(J)-D*C(I)
                                                                            SA503240
   50 CONTINUE
                                                                            SA503250
   60 CONTINUE
                                                                            SA503260
  110 IF(IT.EQ.O.OR.M.NE.N) GO TO 100
                                                                            SA503270
     DG 120 I=1.N
                                                                            SA503280
  120 A(I+N)=C(I)
                                                                            SA503290
      DO 130 I=1.N
                                                                            SA503300
      11-1B(1)
                                                                            SA503310
  130 C(II) = A(I,N)
                                                                            SA503320
  100 CONTINUE
                                                                            SA503330
      IF(IT.EQ.0) WRITE(6.02) (IB(I), I=1,N)
                                                                            SA503340
C
      WRITE(6,05)
                                                                            SA503350
C
      DO 80 I=1.M
                                                                            SA503360
  80 WRITE(6,04) (A(I,J),J=1,N),C(I)
                                                                            SA503370
      RETURN
                                                                            SA503380
   01 FORMAT(5H1ROW ,12,14H IS ALL ZEROS.)
   02 FORMAT(24HOSINGLE PERMUTATION IS... 2013//)
                                                                            SA503390
  03 FORMAT(21HOTHE INPUT MATRIX IS9//)
                                                                            SA503400
                                                                            SA503410
  04 FORMAT(1H ,7D16.8)
  05 FORMAT(22HOTHE OUTPUT MATRIX IS9//)
                                                                            SA503420
                                                                            SA503430
      END
                                                                            SA503440
                                                                            SA503450
      SUBROUTINE POLVAL (N1.N.PN)
                                                                            SA503460
      DIMENSION PN(10,200)
      DATA PI/3.14159265358979323846/
                                                                            SA503470
                                                                            SA503480
      D2=2. #PI/FLOAT(N1-1)
```

```
SA503490
   N2 = (N1 + 1)/2
   DO 10 I=1.N2
                                                                        SA503500
                                                                        SA503510
   A2=D2*FLOAT(I-1)
                                                                        SA503520
   C2=COS(A2)
   NN=N+1
                                                                        SA503530
                                                                        SA503540
   DO 10 MM=1,NN
  M=MM-1
                                                                        SA503550
   PN (MM. I) = SPNM (N. M. C2)
                                                                        SA503560
                                                                        SA503570
10 CONTINUE
                                                                        SA503580
   RETURN
                                                                        SA503590
   END
                                                                        SA503600
   SUBROUTINE AMPFLD (R.P.N.A.B.F)
                                                                        SA503610
   DIMENSION R(3) .P(3) .A(11) .B(10) .F(3) .U(3) .V(3) .W(3)
                                                                        SA503620
  DATA PI/3.14159265358979/
                                                                        SA503630
   CALL SUM(1.,R,-1.,P,U)
                                                                        SA503640
   CALL SPCOOR(U.V)
                                                                        SA503650
  R1=V(1)#2.54
                                                                        SA503660
                                                                        SA503670
   IF(R1.NE.O.) GO TO 10
                                                                        SA503680
   PRINT 01
                                                                        SA503690
   RETURN
10 01=V(2) #PI/180.
                                                                        SA503700
  02=V(3) #PI/180.
                                                                        SA503710
   S1=SIN(O1) $ S2=SIN(O2)
                                                                        SA503720
   C1=COS(O1) $ C2=COS(O2)
                                                                        SA503730
   U(1)=C1+S2 $ U(2)=S1+S2 $ U(3)=C2
                                                                        SA503740
   V(1)=C1+C2 $ V(2)=S1+C2 $ V(3)=-S2
                                                                        SA503750
                                                                        SA503760
   W(1) = -S1
              $ W(2)=C1
                            $ W(3)=0.
  H1=H2=H3=0.
                                                                        SA503770
   NN=N+1
                                                                        SA503780
                                                                        SA503790
   DO 30 MM=1,NN
   M = MM - 1
                                                                        SA503800
   P1=FLOAT(M) #01
                                                                        SA503810
                                                                        SA503820
   SM1=SIN(P1) $ CM1=COS(P1)
   P1=SPNM(N.M.C2)
                                                                        SA503830
   P2=SPNM(N,M+1,C2)
                                                                        SA503840
   P3=P4=0. $ CP=SQRT(FLOAT(N*(N+1))/2.)
                                                                        SA503850
   IF (M.EQ.0) GO TO 20
                                                                        SA503860
   P4=FLOAT((N-M+1)*(N-M+2))*PNM(N+1,M-1,C2)+PNM(N+1,M+1,C2)
                                                                        SA503870
   P4=.5#SQRT(2.#ANF(N-M)/ANF(N+M))#P4
                                                                        SA503880
   P3=C2+P4 $ CP=SQRT(FLOAT((N-M)+(N+M+1)))
                                                                        SA503890
                                                                        SA503900
20 B1=0.
   IF(M.GT.O) B1=B(M)
                                                                        SA503910
   A1=A(MM) #CM1+B1#SM1
                                                                        SA503920
                                                                        SA503930
   H1=H1+A1*P1
                                                                        SA503940
   H2=H2+A1*(CP*P2-P3)
   H3=H3+(A(MM)*SM1-B1*CM1)*P4
                                                                        SA503950
                                                                        SA503960
30 CONTINUE
                                                                        SA503970
   R1=R1++(N+2)
   H1=FLOAT(N+1) #H1/R1 $ H2=H2/R1 $ H3=H3/R1
                                                                        SA503980
   CALL SUM(H1,U,H2,V,F) $ CALL SUM(1.,F,H3,W,F)
                                                                        SA503990
                                                                        SA504000
   RETURN
01 FORMAT(50H0FIELD VECTOR CANNOT BE COMPUTED AT POLE POSITION.//)
                                                                        SA504010
                                                                        SA504020
   END
                                                                        SA504030
   FUNCTION SPNM(N.M.X)
                                                                        SA504040
   SPNM=PNM(N,M,X)
                                                                        SA504050
                                                                        SA504060
   IF (M.EQ.O.OR.M.GT.N) RETURN
   SPNM=SQRT(2.*ANF(N-M)/ANF(N+M))*SPNM
                                                                        SA504070
                                                                        SA504080
   RETURN
```

```
END
                                                                         SA504090
                                                                         SA504100
   FUNCTION PNM(N.M.X)
                                                                         SA504110
                                                                         SA504120
   PNM=0.
   IF (M.GT.N) RETURN
                                                                         SA504130
   IF((ABS(1.-ABS(X))).GT.1.E-9) GO TO 20
                                                                         SA504140
   IF(M.NE.O) RETURN
                                                                         SA504150
   PNM=-1.
                                                                         SA504160
   IF(X.GT.O..OR.N.EQ.INT(FLOAT(N)/2.+.1)#2) PMM=1.
                                                                         SA504170
                                                                         SA504180
   RETURN
20 CM= (2. ++N) +ANF(N) +ANF(N-M)
                                                                         SA504190
   PNM=1.
                                                                         SA504200
   IF(M.NE.O) PNM=SQRT(1.-X*X)**M
                                                                         SA504210
   CNM=ANF(2+N)+PNM/CNM
                                                                         SA504220
   PNM=1.
                                                                         SA504230
   IF(M.NE.N) PNM=X++(N-M)
                                                                         SA504240
   IF(N-M.LE.1) GO TO 40
                                                                         SA504250
  PRD1=1.
                                                                         SA504260
   NT={N-M1/2
                                                                         SA504270
  DO 30 I=1.NT
                                                                         SA504280
   AN1=FLOAT(N-M-2#I+2)
                                                                         SA504290
   AN2=FLOAT(2#1)
                                                                         SA504300
   AN3=FLOAT(2*N-2*I+1)
                                                                         SA504310
   PRD1=-PRD1+AN1+(AN1-1)/(AN2+AN3)
                                                                         SA504320
   NE=N-M-2+1
                                                                         SA504330
                                                                         SA504340
   AN1=1.
   IF (NE.GT.O) AN1=X##NE
                                                                         SA504350
   PNM=PNM+PRD1 #AN1
                                                                         SA504360
30 CONTINUE
                                                                         SA504370
40 PNM=CNM+PNM
                                                                         5A504380
   RETURN
                                                                         SA504390
                                                                         SA504400
   END
                                                                         SA504410
   FUNCTION ANF(N)
                                                                         SA504420
   DOUBLE PRECISION AN
                                                                         SA504430
   ANF=1.
                                                                         SA504440
                                                                         SA504450
   AN=1.D0
   IF(N.LT.O) PRINT 01
                                                                         SA504460
                                                                         SA504470
   IF(N.LT.2) RETURN
   DO 10 I=2.N
                                                                         SA504480
10 AN=AN+DBLE(FLOAT(I))
                                                                         SA504490
   ANF=SNGL(AN)
                                                                         SA504500
   RETURN
                                                                         SA504510
01 FORMAT(37H1FACTORIAL INTEGER IS LESS THAN ZERO.//)
                                                                         SA504520
   END
                                                                         SA504530
                                                                         SA504540
   SUBROUTINE SPCOOR (D.R.)
                                                                         SA504550
   DIMENSION D(3) .R(3)
                                                                         SA504560
   DATA PI/3.14159265358979/
                                                                         SA504570
   R(1) = SQRT(DOT(D,D))
                                                                         SA504580
                                                                         SA504590
   R(2)=0.
  R(3)=0.
                                                                        SA504600
   IF(R(1).EQ.O.) RETURN
                                                                         SA504610
   IF(D(1)##2+D(2)##2.NE.O.) R(2)#ATAN2(D(2),D(1))#180./PI
                                                                         SA504620
   R(3) = ATAN2(SQRT(D(1) ##2+D(2) ##2) +D(3)) #180 +/PI
                                                                        SA504630
   RETURN
                                                                         SA504640
  END
                                                                        SA504650
                                                                        SA504660
   SUBROUTINE SUM(A,X,B,Y,Z)
                                                                         SA504670
   DIMENSION X(3) +Y(3) +Z(3)
                                                                         SA504680
```

```
DO 10 I=1.3
                                                                        SA504690
                                                                        SA504700
10 Z(1)=A*X(1.+B*Y(1)
                                                                        SA504710
   RETURN
                                                                        SA504720
   END
                                                                        SA504730
                                                                        SA504740
   FUNCTION DOT(X.Y)
                                                                        SA504750
   DIMENSION X(3)+Y(3)
                                                                        SA504760
   DOT=X(1)*Y(1)+X(2)*Y(2)+X(3)*Y(3)
                                                                        SA504770
   RETURN
                                                                        SA504780
   END
                                                                        SA504790
   SUBROUTINE PRINTF(F.NO.N1)
                                                                        SA504800
                                                                       SA504810
   DIMENSION F(800), F1(100)
                                                                        SA504820
   DO 20 KO=1.NO
                                                                        SA504830
   DO 10 I=1.N1
                                                                        SA504840
   II=I+(K0-1)=N1
                                                                        SA504850
10 F1(I)=F(II)+1.E5
                                                                        SA504860
   WRITE(6.01) KO
                                                                        SA504870
20 WRITE(6+02) (F1(KK)+KK=1+N1)
01 FORMAT(11HOCURVE NO. +12)
                                                                        SA504880
                                                                        5A504890
02 FORMAT(1H .8F8.1)
                                                                        SA504900
   RETURN
                                                                        SA504910
   END
                                                                       SA504920
                                                                        SA504930
   SUBROUTINE DATPLT(NO.N1.F.YDIST)
   DIMENSION F(1000) +F1(33) +F2(73) +X(33) +X1(73) +C(1 ) +P(1 ) +CH(16)
                                                                        SA504940
                                                                        SA504950
   DATA PI/3.14159265358979/
   DATA CH/1H1,1H2,1H3,1H4,1H5,1H6,1H7,1H8,1H9,2H10,2H11,2H12,2H13,
                                                                       SA504960
                                                                        SA504970
  + 2H14.2H15.2H16/
                                                                        SA504980
   N3=N0#N1
   CALL YSCALE(N3.F.YDIST.YMAX.YMIN)
                                                                        SA504990
                                                                        SA505000
   DX=360./FLOAT(N1-1)
                                                                        SA505010
   F1(1)=F1(2)=YMAX S X(1)=0. S X(2)=360.
  CALL CALCM1(2, X, F1, 0, 0., 360., YMIN, YMAX, 6., 7., TITLE, 0,
                                                                        SA505020
  + 20HCOLATITUDE (DEGREES),-20,30HNORMAL MAGNETIC FIELD (GAMMAS),
                                                                        SA505030
                                                                        SA505040
  + 30.0.18)
                                                                        SA505050
   F1(2) = YMIN S X(1) = X(2) = 360.
                                                                        SA505060
   CALL CALCM1(-2.X.F1.0)
   F1(1)=F1(2)=0. $ X(1)=360. $ X(2)=0.
                                                                        SA505070
                                                                        SA505080
   IF(YMAX.GT.O.O.AND.YMIN.LT.O.O) CALL CALCM1(-2.X.F1.0)
                                                                        SA505090
   DO 10 I=1.N1
                                                                        SA505100
10 X(I)=DX#FLOAT(I-1)
                                                                        SA505110
   DO 20 I=1.73
                                                                        SA505120
20 X1(I)=5.*FLOAT(I-1)
                                                                       SA505130
   IJ=0
                                                                        SA505140
   DO 50 I=1.NO
                                                                        SA505150
   DO 30 J=1.N1
                                                                        SA505160
   [J=[J+1
                                                                        SA505170
30 F1(J)=F(IJ)#1.E+5
                                                                        SA505180
   CALL FNCTON(F1,N1-1,C,CO,P,N2,DEV)
                                                                        SA505190
   DO 40 N=1.N2
                                                                        SA505200
   EN=N
                                                                        SA505210
   DO 40 J=1.73
                                                                        SA505220
   XX=X1(J)#PI/!80.
                                                                        SA505230
   IF(N.EQ.1) F2(J)=C0
40 F2(J)=F2(J)+C(N)+SIN(EN+XX+P(N))
                                                                        SA505240
                                                                        SA505250
   CALL CALCM1 (-73, X1, F2,0)
                                                                        SA505260
   DO 50 J=1.N1
                                                                        SA505270
   NC = 1 + 1 / 10
                                                                       SA505280
   CALL SYMBL4(X(J)/60..(F1(J)-YMIN)/YDIST..08.CH(I).0..NC)
```

```
SA505290
SA505300
50 CONTINUE
   RETURN
                                                                          SA505310
   END
                                                                          SA505320
                                                                          SA505330
   SUBROUTINE FNCTON(F. NSCANS. C. CO. PHI. N2. DEV)
   DIMENSION F(1) +G(33) +C(1) +PHI(1)
                                                                          SA505340
                                                                          SA505350
   DATA PI/3.14159265358979/
                                                                          SA505360
   DX=2. *PI/FLOAT (NSCANS)
                                                                          SA505370
   NE=NSCANS/2+1
                                                                          SA505380
   C0=0.
                                                                          SA505390
   DO 10 J=1.NSCANS
10 CO=CO+F(J)/FLOAT(NSCANS)
                                                                          5A505400
                                                                          SA505410
   DO 30 N=1+NE
                                                                          SA505420
   FNEN
                                                                          SA505430
   51=0.
                                                                          SA505440
   C1=0.
                                                                          SA505450
   X=-DX
                                                                          SA505460
   DO 20 J=1.NSCANS
                                                                          SA505470
   X = X + DX
   S1=S1+(1./PI)#F(J)#SIN(EN#X)#DX
                                                                          SA505480
20 C1=C1+(1./PI)+F(J)+COS(EN+X)+DX
                                                                          SA505490
                                                                          SA505500
   C(N)=SQRT(S1*#2+C1**2)
   IF((FLOAT(N)).EQ.(FLOAT(NSCANS)/2.)) C(N)=C(N)/2.
                                                                          SA505510
                                                                          SA505520
   PHI(N)=0.0
                                                                          SA505530
30 IF((S1++2+C1++2).NE.O.) PHI(N)=ATAN2(C1+S1)
                                                                          SA505540
   DO 50 N=1.NE
                                                                          SA505550
   EN=N
                                                                          SA505560
   X = -DX
                                                                          SA505570
   DEV1=0.
                                                                          SA505580
   DO 40 J=1.NSCANS
                                                                          SA505590
   X=X+DX
                                                                          54505600
   IF(N.EQ.1) G(J)=CO
   G(J)=G(J)+C(N)+SIN(EN+X+PHI(N))
                                                                          SA505610
                                                                          SA505620
40 IF(ABS(G(J)-F(J)).GT.DEV1) DEV1=ABS(G(J)-F(J))
                                                                          SA505630
   IF(N.EQ.1) DEV=DEV1
                                                                          SA505640
   IF(N.EQ.1) N2=1
                                                                          SA505650
   IF (DEV1.LT.DEV) N2=N
                                                                          SA505660
   IF(DEV1.LT.DEV) DEV=DEV1
                                                                          SA505670
50 CONTINUE
                                                                          SA505680
   RETURN
                                                                          SA505690
   END
                                                                          SA505700
                                                                          SA505710
   SUBROUTINE YSCALE (N.F.YD.YX.YM)
                                                                          SA505720
   DIMENSION F(800)
                                                                          SA505730
   PP=F(1)
                                                                          S# 505740
   PN=PP
                                                                          SA505750
   DO 10 I=1.N
                                                                          SA505760
   IF(F(I).GT.PP) PP=F(I)
   IF(F(I).LT.PN) PN=F(I)
                                                                          SA505770
                                                                          SA505780
10 CONTINUE
                                                                          SA505790
   PP=PP#1.E+5
                                                                          SA505800
   PN=PN+1.E+5
                                                                          SA505810
   P=PP-PN
                                                                          SA505820
   SN=0.
   1F(PP.GT.O.) SN=1.
                                                                          SA505830
                                                                          SA505840
   IF(YD.NE.O.) GO TO 50
                                                                          SA505850
   DO 20 I=1+21
                                                                          SA505860
   FA=(1.E-9)*(10.##I)
                                                                          SA505870
   FA1=FA+.1
                                                                          SA505880
   IF(P/FA.GE.1.) GO TO 20
```

	GO TO 30	SA505890
20	CONTINUE	SA505900
30	YD=5.*FA1	SA505910
	YX=FLOAT([NT(PP/YD+SN))*YD	SA505920
	YM=YX-7.*YD	SA505930
	CN=4.	SA505940
	DO 40 I=1.3	SA505950
	CN=CN+.5	SA505960
	YD1=CN#FA1	SA505970
	YX1=FLOAT([NT(PP/YD1+SN))*YD1	SA505980
	YM1=YX1-7.#YD1	SA505990
	IF((7.*YD1-P).LT.0.0.OR.YX1.LT.PP.OR.YM1.GT.PN) RET	URN SA506000
	YD=YD1	SA506010
	YX=YX1	SA506020
	YM=YM1	SA506030
40	CONTINUE	SA506040
50	YX=FLOAT(INT(PP/YD+SN)) +YD	SA506050
	YM=YX-7. #YD	SA506060
	RETURN	SA506070
	END	SA506080

APPENDIX J SAMPLE PROBLEMS FOR SA5024

I. PROBLEM EXECUTED ON INTERCOM (TIME-SHARING SYSTEMS)

NØL INTERCØM
TYPE "LØGIN."
LØGIN(S)
024533LACK/

09/14/73 13.26.48. BC/42/35 C- SETUP-GENERAL

ØN AT 13.27.14. 09/14/73

**GENERAL

**NEW OR OLD FILE- ATTACH(AAA, BN5024) * REWIND(AAA) * COPYBR(AAA, FIL, 15)

13.27.44.ATTACH(AAA,BN5024)

**READY.

RETURN(AAA)

**READY.

FIL.

16 33 1 8 0 0 0 96.00 0.000 0.000 0.000 (7E10.4)

SNAM

NO = 16,

N1 = 33.

NH1 = 1,

= 8, NH2 IPI = 0, IP2 = 0, IW = 0, RI = 0.96E + 02E G = 0.0, EΑ = 0.0, ED = 0.0, PY = -0.0, \$ END F9 = (7E10.4)

PØSITIØN VECTØR AND CØEFFICIENTS FØR NN & NM = 1 3 ARE -- 39.00 0.000 0.000 0.000 0.00

21.0000 36.3730 0.0000

• -•1500E+05 •2598E+05 -21.00 -36.373 0.000 +.0000E+00-.1500E+05 -.2598E+05

21.0000-36.3730 0.0000

- • 1500E+05

- 2598E+05

THE MONOPOLE MOMENT IS --

.000005

ACTUAL MOMENT IS --

 1000.00000
 0.000000
 0.00000

 1000.00000
 0.00000
 90.00000

CALCULATED MOMENT IS --

999.999347 .000000 -.000000 999.999347 .000000 90.000000

PERCENT ERROR IS --

•653140392387E-04 -•367553809610E-09 •204352090805E-10

THE A & B COFFFS. FOR THE 1TH HARMONIC ARE:

-.204352090805E-09 .999999346860E+03

-367553809610E-08

THE QUADRUPOLE MOMENTS Q11,022,033,012,013,023 ARE --

•908333976792E+07 •985968240459E+07 -•189430221725E+08

-.140861894026E-05 .277251221753E-08 -.114908029088E-06

```
THE A & B COEFFS. FOR THE 2TH HARMONIC ARE:
  -.947151108626E+07
                     •160071067512E-08 -•224110815131E+06
  -.663421815261E-07 -.813266524347E-06
THE A & B COEFFS. FOR THE 3TH HARMONIC ARE:
   •468939542770E-04 •683659431170E+08 -•223517417908E-07
                                                              .23409232
3833E+10
  -.814609229565E-04
                     .884430482984E-05 -.183412397746E-03
THE A & B COEFFS. FOR THE 4TH HARMONIC ARE:
   •154465924862E+12 -•778198242188E-03
                                        •140584755795E+11 -•10529816
1507E-01 -.186018026985E+11
   •351142883301E-02 •118371725082E+00 -•733375549316E-03 -•24567153
3048E-01
THE A & B COEFFS. FOR THE 5TH HARMONIC ARE:
  -.487304687500E+00 -.217954001634E+13 -.256347656250E-01 -.28122218
7225E+14 -.820884704590E-01
  -.315797097447E+13
   •177050781250E+01
                      •128906250000E+00
                                          •177172851563E+01 -•77190017
7002E+00 -.294870560169E+02
THE A & B COEFFS. FOR THE 6TH HARMONIC ARE:
  -.210884991589E+16 -.19500000000E+02 -.322787259184E+15
                                                              .10126562
  -.210884991589E+16 -.19500000000E+02 -.322787259184E+15
                                                              ·10126562
5000E+03
           •353625883682E+15
   •225479736328E+02 •453272232211E+16
   • 128687500000E+03
                      •104384375000E+04
                                          •885156250000E+01
                                                              .17665273
4375E+04 -.262702636719E+02
  -.114442594910E+04
THE A & B COEFFS. FOR THE 7TH HARMONIC ARE:
  -.22542400000E+06
                     • 43199 4422628E+17 •17280000000E+04
                                                              35406399
7182E+18 -.101790000000E+05
   . 496241920808E+17
                     -.293837539062E+05 -.676359128706E+17
                     -.15480000000E+05 -.23064000000E+05 -.12074000
  -.26784000000E+05
0000E+05
           •115108750000E+06
  -.933500781250E+04 -.660728401367E+06
THE A & B COEFFS. FOR THE 8TH HARMONIC ARE:
   •269942772159E+20 •206438400000E+07
                                         •569785815443E+19 -•60129280
0000E+07 -.597539013375E+19
  -.156819200000E+07 -.451694469107E+20
                                          •765785875000E+06 -•91015764
9666E+19
                     •626974720000E+08
  - • 42557 4400000E+07
                                         •271462400000E+07 •52427776
0000E+08
          • 17549 4400000E+07
   •531896320000E+08 -•174570300000E+07 -•105260966187E+09
0
13.38.54.STØP
**READY.
LØGØUT.
```

CP TIME 22.322
PP TIME 106.909
CØNNECT TIME 0 HR 12 MIN 22 SEC
TØTAL CØST ØF SESSIØN = \$ 6.16
09/14/73 LØGGED ØUT AT 13.39.10.<

Notes:

- 1. The file BN5024 is the binary version of SA5024. It consists of 18 binary records (subprograms). The last three are plotting routines and are not used when executing problems on INTERCOM.
- 2. The information typed in by the user has been underlined.

APPENDIX J (CONT.)

II. PROBLEM SUBMITTED TO BATCH

NØL INTERCØM
TYPE "LØGIN."
LØGIN(S)
024533LACK/

0.000

96.00

20.00

0.000

1000.

0

33

0

0.000

0.000

0.000

0

0.000

0.000

0

0

16

1

6190 (9F8.4)

6160 6170

6180

6200

6210

6220

6230

6240

TAPE(ØFF)

09/14/73 13.40.17. BC/42/35 C- SETUP-GENERAL

ØN AT 13.40.33. 09/14/73 **GENERAL

**NEW OR OLD FILE- NEW/IECCO24*TAPE(ON)

**READY. 1 I ECC5 ST, P1, T200, CM060000 . 55302435, 024, LACKEY . 2ATTACH(ABC, NOLBIN) 3COPYN(O, DEF, ABC) 4RETURN(ABC) 5ATTACH(BN5024, BN5024) 6 REWIND(BN5024) 7 COPYBF (BN 5024, CBA) 8 RETURN (BN 5024) 9 LØAD(CBA) 1 ODEF. 11*WEØR 12REWIND(ABC) 13G0ULD1,14,ABC 1 4*WEØR 6100 16 33 1 8 1 0.000 0.000 0.000 6110 96.00 0.000 6120 (9F8.4) 6130 1 1 20.00 0.000 0.000 6140 6150 0.000 1000.

Tape prepared beforehand in LOCAL mode

J**-6**

0

0.000

0

0.000

**READY • SAVE*PURGE(IECC024) *BATCH • *QUEUES •

**SAVED IECCO24
13.43.50.PURGE(IECCO24)
TYPE FILE NAME-IECCO24

TYPE DISPOSITION-INPUT

TYPE FILE NAME-END

QUEUES 13.44.38. I= 7,0= 0, P= 0, C= 3.
INPUT = 7
CABAP72-2 BDCR07K-1 BDC9R7N-3 BDCSH7U-1 IECC579-1 DCCRW78-5
CESEGO2-3
0 UTPUT= NONE
PUNCH = NONE
COMMON= 3
FARE2 -0 SSSSSSU-0 SSSSSST-0
CONTROL PTS.
ICCBB63-3 GRIDA7S-5 CABTR7T-5 CBCQ26K-1 AUDIT73-4 HHJL371-2
CCB7870-5
13.44.38.ST0P
**READY.
LOGOUT.

Note:

1. The information typed in by the user has been underlined.

APPENDIX K

NOL TECHNICAL NOTE 9726
"NUMERICAL COMPUTATION OF LEGENDRE POLYNOMIALS AND SPHERICAL FUNCTIONS"

TN 9726

FOR INTERNAL USE ONLY

NAVAL JRDNANCE LAPOPATOPY White Oak, Silver Spring, Maryland

533: MHL: bag

NUMERICAL COMPUTATION OF LEGENDRE POLYNOMIALS AND SPHERICAL FUNCTIONS

7 November 1972

M. H. Lackey
Magnetic Structures Group

Asgmt: Task No. NOL-786/NPL (Magnetic Calibration for NPL)
TWP No. 530-524

Abst: This report describes computer subroutines for the generation of Legendre polynomials and spherical functions. The subroutines are coded in the FOFTFAN TV computer language. A brief description of the functions and some of their properties is also included.

A comparison is given of the numerical stability of two different methods of generating the functions.

- Ref: (a) S. Chapman & J. Bartels, Geomagnetism (Oxford Press, London, 1940), Vol. II
 - (b) W. D. Macmillan, The Theory of the Potential (McGraw-Hill Book Cc., New York, 1930)
 - (c) ASM 55 Handbook of Mathematical Functions (U.S. Government Printing Office, Washington, D.C., 1964)
 - Office, Washington, D.C., 1964)
 (d) NOLTR 69-60, The Reaction of a Rigid Body to a Uniform Force Field, 17 Mar 1969, M. H. Lackey
- Encl: (1) Figure 1, Regular Legendre Polynomials $P_n(\cos \theta)$ For n = 0 through 7
 - (2) Figure 2, Associated Legendre Polynomials P_{7,m}(cosv) For n = 0 through 7
 - (3) Figure 3, Schmidt Polynomials $P_7^m(\cos\theta)$ For m = 0 through 7
 - (4) Figure 4, Unstable Procedure for Pⁿ⁻¹(cosθ) For n = 15 through 20
 - (5) Figure 5, Stable Procedure for Pⁿ⁻¹(cosθ) For n = 15 through 20
 - (6) Appendix A, Listing of Function Subroutines

INTRODUCTION

- 1. Computer subroutines have been devised to compute values for three special types of polynomials including regular and associated Legendre polynomials, and Schmidt functions. The functions have special orthogonality properties which make them especially useful for interpolation and approximation. Techniques in spherical harmonic analysis can be defined in terms of the associated Legendre polynomials (spherical functions). The computer subroutines can be used to develop numerical methods for the harmonic analysis techniques. A listing of the subroutines in FORTRAN IV is included in Appendix A.
- 2. The subroutines are based on a finite series definition for the polynomials. It was determined that the series definition produced a more stable method than methods based on recurrence formulas.

POLYNOILAL DEFINITIONS

- 3. There are a variety of ways to define the polynomials depending on the use intended for them. The definitions and terminology used in the following definitions conform to the usage in references (a) and (b). Some of the recurrence formulas were obtained from reference (c).
- 4. The regular Legendre polynomials $P_n(x)$ can be defined on the interval $-1 \le x \le 1$ by Rodrique's formula,

$$P_n(x) = \frac{1}{2^n n!} \left(\frac{d}{dx}\right)^n (x^2-1)^n$$
 (1)

for $n \ge 0$ and $|x| \le 1$. The associated Legendre polynomials or spherical functions $P_{n,m}(x)$ can now be defined as

$$P_{n,m}(x) = (1-x^2)^{m/2} \left(\frac{d}{dx}\right)^m P_n(x) = \frac{(1-x^2)^{m/2}}{2^n n!} \left(\frac{d}{dx}\right)^{m+n} (x^2-1)^n$$
 (2)

for $m \ge 0$, $n \ge 0$, and $|x| \le 1$. The index n designates the degree of the polynomial and the index m designates the order. It should be noted that some definitions of $P_{n,m}(x)$ contain a factor of $(-1)^m$ depending on whether the polynomials are considered to be functions of x on the interval $-1 \le x \le 1$ or as functions of 0 (with $x = \cos 0$) on the interval $0 \ge 0 \le \pi$. In this report the factor is dropped in keeping with the definitions in reference (a).

- 5. A comparison of Equations (1) and (2) show that the regular Legendre polynomials $P_n(x)$ are a subset of the associated Legendre polynomials $P_{n,m}(x)$, i.e., $P_n(x) = P_{n,0}(x)$. Also Equation (2) leads to the fact that $P_{n,m}(x) = 0$ for m > n.
- 6. Graphs of typical families of the polynomials are shown in Figures 1 and 2.

The regular Legendre polynomials shown in Figure 1 include P_0 , P_1 , ..., P_7 . The polynomial values $P_n(\cos\theta)$ are plotted as functions of θ for $0 \le \theta \le 180^{\circ}$. Figure 2 shows the family $P_{7,m}(\cos\theta)$ for $m=0,1,2,\ldots,7$. Notice the variation in the value of the peaks of each curve. The curves for m<4 appear as straight lines coinciding with the zero axis. This extensive variation in the order of magnitude for different polynomials $P_{n,m}(x)$ has disadvantages, especially in the development of numerical analysis procedures. This led 'chmidt (see reference (a)) to develop a new set of polynomials.

7. The Schmidt polynomials $P_n^m(x)$ are defined by scaling the associated Legendre polynomials as follows

$$\begin{cases} P_{n}^{0}(x) - F_{n,0}(x) = P_{n}(x) \\ P_{n}^{m}(x) = \frac{2 \cdot (n-n)!}{(n+m)!} P_{n,m}(x) \end{cases}$$
(3)

for m>0 and $|x|\le 1$. The resulting polynomials all have values of the same order of magnitude. Also, $|P_n^m(x)|\le 1$ for $|x|\le 1$. A typical family of Schmidt polynomials $P_7^m(\cos\theta)$ for $m=0,\ 1,\ 2,\ \ldots,\ 7$ is shown in Figure 3.

NUMERICAL METHODS

8. There are many ways of numerically generating sets of polynomials. One of the most common methods is the use of recurrence formulas. The associated Legendre polynomials satisfy several recurrence formulas including

$$P_{n,m}(x) = [(2n-1) \cdot x \cdot P_{n-1,m}(x) - (n+m-1)P_{n-2,m}(x)]/(n-m) \text{ for } m \neq n \text{ and } n > 1$$
 (4)

$$P_{n,m}(x) = [(m-n-1) \cdot x \cdot P_{n,m-1}(x) + (n+m-1)P_{n-1,m-1}(x)]/(1-x^2)^{1/2} \text{ for } |x| < 1,$$

$$m > 0, \text{ and } n > 0$$
(5)

$$P_{n,m}(x) = 2(m-1) \cdot x \cdot (1-x^2)^{-1/2} P_{n,m-1} - (n+m-1)(n-m+2) P_{n,m-2}(x) \text{ for } |x| < 1$$
and m>1. (6)

Equation (4) represents a recurrence formula with varying degree, Equation (5) represents both varying degree and varying order, and Equation (6) represents varying order.

9. Another method for generating the associated Legendre polynomials is given

in reference (a). The polynomials are expressed as a finite (alternating) series in powers of x. The expression is:

$$P_{n,m}(x) = \frac{(2n)! (1-x^2)^{m/2}}{2^n \cdot n! (n-m)!} \left\{ x^{n-m} - \frac{(n-m)(n-m-1)x^{n-m-2}}{2(2n-1)} + \frac{(n-m)(n-m-1)(n-m-2)(n-m-3)x^{n-m-4}}{2 \cdot 4(2n-1)(2n-3)} - \cdots \right\}$$
(7)

where the last term inside the bracket is constant if (n-m) is even; or is a multiple of x if (n-m) is odd.

NUMERICAL STABILITY

10. Several different methods based on the recurrence formulas were used to test the numerical stability for large values of n and m, and for small values of (x^2-1) . The only recurrence formula with any stability was Equation (4) which has varying degree. This formula can be used by itself only to generate the regular Legendre polynomials. When either Equation (5) or (6) is added the method becomes unstable. For example, Figure 4 shows a family of $P_n^{n-1}(\cos\theta)$ for $n=15, 16, \ldots, 20$. Notice that instability becomes worse as |x| approaches 1 and as n increases.

ll. Instead of trying to stabilize the methods using the recurrence formulas it was decided to try the series Equation (7). Although the equation appears to be unstable itself (alternating series can be unstable) the results indicate the opposite. Figure 5 shows the same polynomials displayed in Figure 4 but generated by Equation (7). There seems to be no problem for $|\mathbf{x}|$ near one or for large n. It was therefore decided to use Equation (7) for the subroutine. The computing time using Equation (7) was about the same as methods using recurrence formulas.

SUBROUTINE CALL STATEMENTS

12. The polynomial values can be computed as follows: Assume that y is a variable used in a computer program and that y is to be set equal to a polynomial value. Then

$$y = P_n(x)$$
 is written as $Y = PMM(N, 0, X)$ for $N \ge 0$ and $|x| \le 1$.

$$y = P_{n,m}(x)$$
 is written as $Y = PNM(N, N, X)$ for $N \ge 0$, $M \ge 0$, and $|x| \le 1$.

$$y = P_n^m(x)$$
 is written as $Y = SPNi(N,H,X)$ for HaO, HaO, and $|x| \le 1$.

There are three function subprograms in the package. These include:

FUNCTION SPNM(N,M,X)

FUNCTION PNM(N, M, X)

FUNCTION ANF(N)

The subrow ine ANF(N) is the factorial subroutine, i.e,

y = n! is written as Y = ANF(N) for $N \ge 0$.

The factorial value is return as a floating point number based on the integer N. The subroutine SPNM uses both PNM and ANF as external functions. The subroutine PNM uses ANF as an external function. The subroutine ANF requires no external functions (machine functions only).

USES OF THE FUNCTIONS P

13. It can be shown that the set of polynomials $\{P_n^m(x)\}$ of fixed order m are orthogonal on the interval $-1 \le x \le 1$ for all $n \ge m$. In fact:

$$\int_{-1}^{+1} P_{n}^{m}(x) P_{n}^{m}(x) dx = \delta_{nn}, \frac{1}{2n+1}$$
 (8)

for $n \ge m$ where δ_{nn} , is the Kronecker delta. The polynomials can therefore be normalised and used for interpolation and expansion of arbitrary functions on the interval $-1 \le x \le 1$.

14. The polynomials are of primary importance in areas of spherical harmonic analysis and potential theory. If we define two new sets of functions as

$$\{\sin(\mathbf{m}\varphi)P_{\mathbf{n}}^{\mathbf{m}}(\cos\theta)\}, \{\cos(\mathbf{m}\varphi)P_{\mathbf{n}}^{\mathbf{m}}(\cos\theta)\}$$
(9)

and consider φ and θ to be the spherical angles representing longitude and colatitude respectively, then the functions are called spherical surface harmonics, and are orthogonal and complete on the surface of the unit sphere. They satisfy the condition

$$\int_{0}^{\pi} \left[P_{\mathbf{n}}^{\mathbf{m}}(\cos\theta) \begin{pmatrix} \cos\mathbf{m}^{\nu} \\ \sin\mathbf{m}^{\nu} \end{pmatrix} \right] \left[P_{\mathbf{n}}^{\mathbf{m}^{\dagger}}(\cos\theta) \begin{pmatrix} \cos\mathbf{n}^{\dagger} \\ \sin\mathbf{n}^{\dagger} \end{pmatrix} \sin\theta d\theta d\nu = \delta_{\mathbf{n}\mathbf{n}^{\dagger}} \delta_{\mathbf{m}\mathbf{n}^{\dagger}} \left\{ \frac{\Delta_{\mathbf{\Pi}}}{2\mathbf{n}+1} \right\}$$
(10)

for n, n', m, m' ≥ 0 (see reference (a)). Then any continuous function $f(\theta,\varphi)$ on the surface of the unit sphere can be expanded into a uniformly convergent series of surface harmonics as

$$f(\theta, \mathbf{v}) = \sum_{n=0}^{\infty} S_n(\theta, \mathbf{v}) = \sum_{n=0}^{\infty} \left\{ \sum_{m=0}^{n} (A_n^m \cos m \mathbf{v} + B_n^m \sin m \mathbf{v}) P_n^m (\cos \theta) \right\}$$
(11)

where $S_n(\theta, \mathbf{r})$ represents a general surface harmonic of degree n. The constants A_n^m and B_n^m are determined from the equations

for $m \ge 0$ and $n \ge 0$.

15. Numerical integrating schemes for uniformly spaced data $f_{ij} = f(v_i, \varphi_j)$ on the surface of the unit sphere are discussed in reference (d).

SUMMA RY

16. This report has discussed briefly some of the properties of Legendre polynomials and some of their uses. The subroutines listed in Appendix A can be used in a variety of ways including interpolation, approximation, and spherical harmonic analysis. Plans are being made to develop other subroutines to perform the spherical harmonic analysis and extrapolation of potential functions.

M. H. Lackey

Copy to:

331 (R. E. Ferguson) 331 (T. A. Orlow)

531 (W. H. Wertman)

5332

720

720 (N. M. Ginsberg)

FIG. 1. REGULAR LEGENDRE POLYNOMIALS $P_n(\cos \omega)$ FCR n=0 THROUGH 7

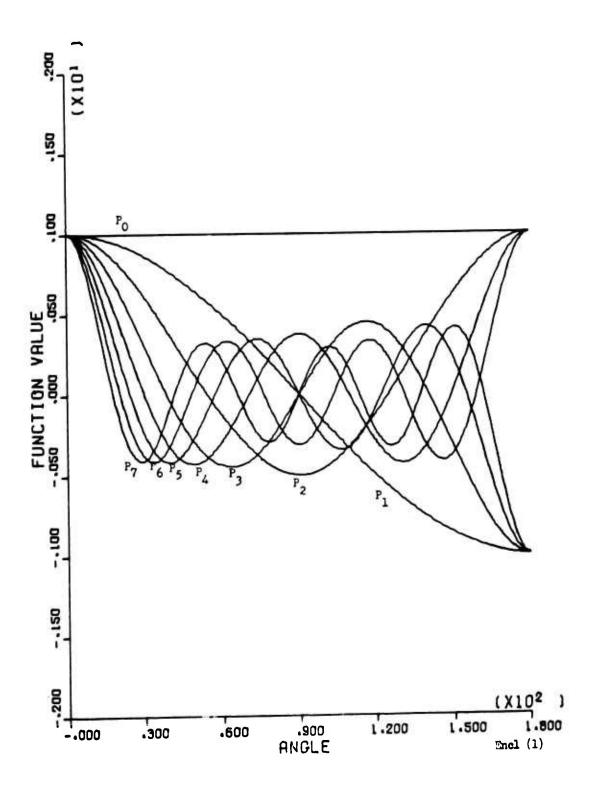


FIG. 2. ASSOCIATED LEGENDRE POLYNOMIALS $P_{7,m}(\cos\theta)$ FOR m=0 THROUGH 7

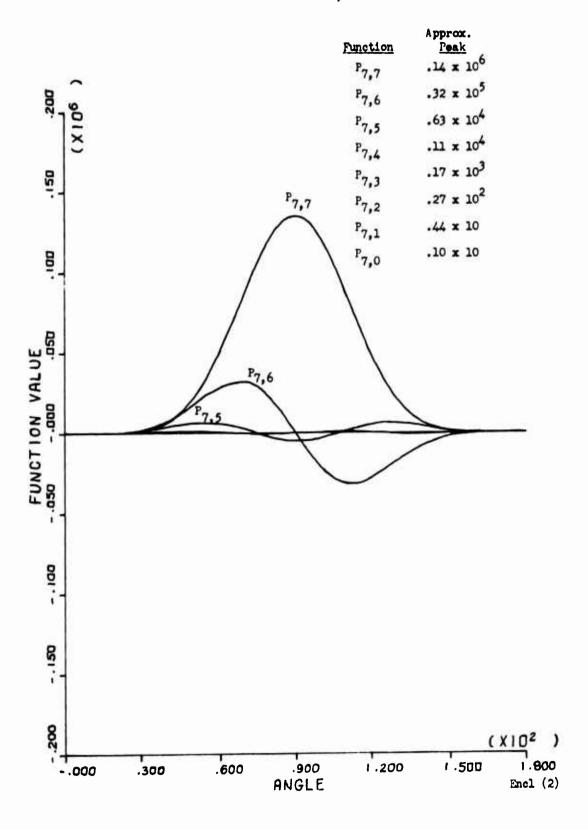


FIG. 3. SCHMIDT POLYNOMIALS $P_7^m(\cos\theta)$ FOR m = 0 THROUGH 7

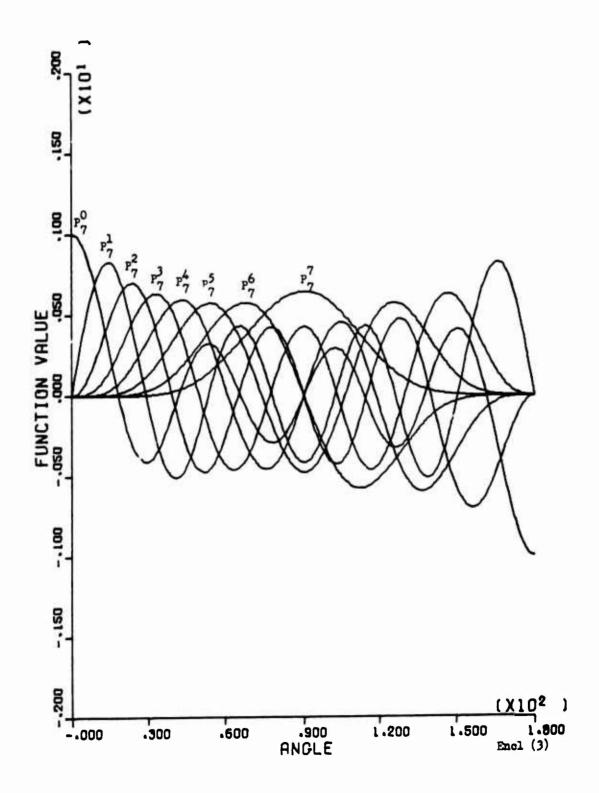


FIG. 4. UNSTABLE PROCEDURE FOR $P_n^{n-1}(\cos\theta)$ FOR n=15 THROUGH 20

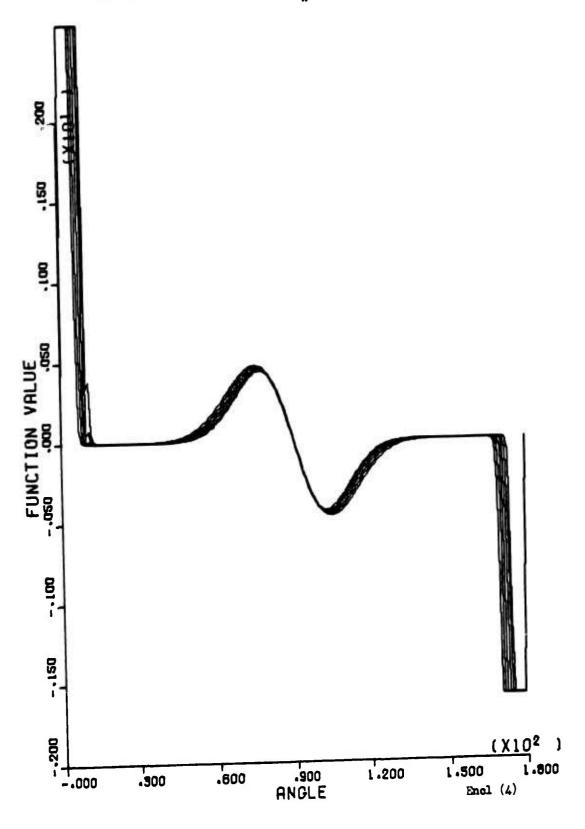
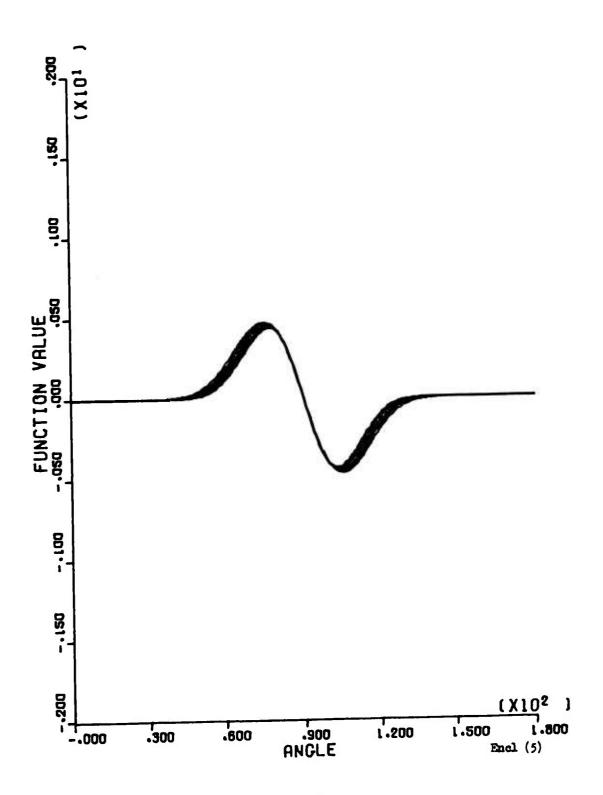



FIG. 5. STABLE PROCEDURE FOR $P_n^{n-1}(\cos\theta)$ FOR n=15 THROUGH 20

APPENDIX A

LISTING OF FUNCTION SUBROUTINES

FUNCTION SPNM(N.M.X) SPNM=PNM(N,M,X) IF (M.EQ.O.OR.M.GT.N) RETURN SPNM: SQRT(2.*ANF(N-M)/ANF(N+M))*SPNM RETURN END FUNCTION PNM(N.M.X) PNM=0. IF (M.GT.N) RETURN IF((ABS(1.-ABS(X))).GT.1.E-9) GO TO 20 IF(M.NE.O) RETURN PNM=-1. IF (X.GT.O..OR.N.EQ.INT(FLOAT(N)/2.+.1)*2) PNM=1. RETURN 20 CNM=(2.**N) *ANF(N) *ANF(N-M) PNM=1. IF (M.NE.O) PNM=SQRT ((1.-X*X)**M) CNM=ANF(2*N)*PNM/CNM PNM=1. IF (M.NE.N) PNM=X**(N-M) IF (N-M.LE.1) GO TO 40 PRD1=1. NT = (N-M)/2DO 30 I=1.NT AN1=FLOAT(N-M-2*I+2) AN2=FLOAT(2+1) AN3=FLOAT(2*N-2*I+1) PRD1=-PRD1+AN1+(AN1-1)/(AN2+AN3) NE=N-M-2+1 AN1=1. IF(NE.GT.O) AN1=X**NE PNM=PNM+PRD1*AN1 30 CONTINUE 40 PNM=CNM*PNM RETURN

END

```
FUNCTION ANF(N)
DOUBLE PRECISION AN
ANF=1.
AN=1.D0
IF(N.LT.O) PRINT 01
IF(N.LT.2) RETURN
DO 10 I=2.N
10 AN=AN+DBLE(FLOAT(I))
"NF=SNGL(AN)
RETURN
01 FORMAT(37H1FACTORIAL INTEGER IS LESS THAN ZERO.//)
END
```